materiały malarSKIE

opracowanie Piotr PRZYBEK
projekt okładki Piotr PRZYBEK

utwór w całości lub we fragmentach powinien być powielany i rozpowszechniany za pomocą urządzeń elektronicznych, mechanicznych, kopujących, nagrywających i innych

wydawnictwo 400d& KRAKÓW 2004
1. podstawowe pojęcia ... 3
2. składniki materiałów malarskich ... 7
 2.1. substancje błonotwórcze .. 9
 2.2. pigmenty .. 9
 2.3. wypełniacze ... 10
 2.4. rozpuszczalniki ... 10
 2.5. rozcieńczalniki ... 10
 2.6. środki pomocnicze .. 10
3. podstawy tworzenia się powłok lakierowych 11
 3.1. schnięcie fizyczne ... 13
 3.2. procesy schnięcia z udziałem tlenu 14
 3.3. procesy schnięcia chemicznego 14
4. rodzaje wyrobów lakierowych .. 15
 4.1. klasifikacja wyrobów lakierniczych 17
 4.1.1. typ spojwa ... 17
 4.1.2. sposób wysychania powłoki .. 18
 4.1.3. funkcja w zestawie lakierniczym 18
 4.1.4. rodzaj rozcieńczalnika ... 18
 4.1.5. ilość składników ... 18
 4.2. charakterystyka wyrobów malarskich 18
 4.2.1. farby tławie .. 19
 4.2.2. farby chlorokauczukowe ... 20
 4.2.3. farby dyspersyjne ... 20
 4.2.4. farby klejowe .. 20
 4.2.5. farby ogniochromne .. 20
 4.2.6. farby epoksydowe ... 21
 4.2.7. farby drukarskie .. 21
 4.2.8. farby przeciwdzewne .. 21
 4.2.9. farby poliuretanowe ... 22
 4.2.10. farby wapienne .. 22
 4.2.11. farby termometryczne .. 22
 4.2.12. farby silikatowe ... 23
 4.2.13. farby silikonowe .. 23
5. wybór powłoki ... 25
 5.1. oczekiwane właściwości powłoki ... 27
 5.2. warunki nakładania i pracochłonność 27
 5.3. zgodność powłok ... 27
6. wady powłok malarskich .. 29
 6.1. wady wewnętrzne ... 31
 6.2. wady zewnętrzne ... 37
7. badania właściwości wyrobów lakierowych 43
 7.1. oznaczanie właściwości wyrobów ciekłych 45
 7.1.1. wstępne próby techniczne .. 45
 7.1.2. oznaczanie lepkości kubkiem wypływowym Ford’a 45
 7.1.3. oznaczanie gęstości ... 45
 7.1.4. oznaczanie zawartości rozpuszczalników i rozcieńczalników 45
 7.1.5. oznaczanie zawartości pigmentów i obciążeń 46
 7.1.6. oznaczanie zawartości substancji błonotwórczych 46
 7.1.7. oznaczanie stopnia roztarcia pigmentów i wypełniaczy 46
 7.2. oznaczanie właściwości wymalowań 46
 7.2.1. oznaczanie rozlewności ... 46
 7.2.2. oznaczanie ścielalności ... 47
 7.2.3. oznaczanie grubości ... 47
 7.2.4. oznaczanie stopnia wyschnięcia 47
ocena właściwości powłok malarskich ... 47
7.3.1. pomiar odporności na uderzenie wg Du Ponta .. 47
7.3.2. oznaczanie odporności powłok na ściereanie przyrządem Gardnera 48
7.3.3. oznaczanie względnej twardości przy użyciu aparatu wahadłowego 48
7.3.4. badanie elastyczności przez zginanie .. 49
7.3.5. oznaczanie przyczepności nożem Peters'a .. 49
7.3.6. oznaczanie przyczepności przez odrywanie ... 49

8. zagadnienia środowiskowe i względni bezpieczeństwa 51
8.1. pigmenty i dodatki zawierające metale ciężkie 53
8.2. toksyczne rozpuszczalniki .. 54
8.3. zagadnienia związane z przygotowaniem powierzchni 54
8.4. bezpieczeństwo pożarowe .. 55

9. pytania i odpowiedzi ... 57

10. dodatek ... 61
10.1. zestawienie pigmentów ... 62
10.1.1. pigmenty białe ... 62
10.1.2. pigmenty czarne .. 62
10.1.3. pigmenty brązowe .. 63
10.1.4. pigmenty czerwone .. 63
10.1.5. pigmenty żółte i pomarańczowe .. 65
10.1.6. pigmenty zielone ... 66
10.1.7. pigmenty niebieskie i fioletowe ... 68

11. spis literatury ... 69
podstawowe
POJĘCIA
Błona lakierowa (swobodna powłoka) – powłoka lakierowa zdjreta z podłoża.

Emalia - wyrób pigmentowany, którego głównym składnikiem jest spoivo lakiernicze tworzące powłokę kryjącą o wysokich walorach dekoracyjno-ochronnych. Służą do ostatecznego wymalowania.

Farba - wyrób pigmentowany z dodatkiem wypełniaczy tworzący powłokę kryjącą spełniającą głównie funkcje ochronną. Wyróżniamy farby do gruntowania i nawierzchniowe. Głównym składnikiem jest spoivo olejowe.

Kit - wyrób lakierowy do wypełnienia wglobęń pieknicy, szczelin i rys oraz innych nierówności podłoża nakładany miejscowo na powierzchnię szpachlą.

Malowanie - nanoszenie wyrobu lakierowego na podłoże, powierzchnię przeznaczoną do wykończenia różnymi metodami.

Pokrycie lakierowe - wielowarstwowy zestaw powłok lakierowych (np. powłoki gruntującej lub podkładowej, międzywarstwowej, nawierzchniowej) wytworzonych w wymaganej kolejności, stanowiący zabezpieczenie ochronne i wykończenie dekoracyjne.

Powłoka kryjąca - powłoka wykazująca zdolności krycia podłoża.

Powłoka lakierowa - warstwa zestalonego wyrobu lakierowego rozprowadzanego na podłożu lub na powierzchni poprzedniej powłoki w postaci przylegającej warstewki o pewnej grubości i określonych właściwościach fizykochemicznych.

Przygotowanie podłoża do malowania - czynności, którym poddaje się podłoże przed naniesieniem pierwszej warstwy wyrobu lakierowego.

Skład podstawowy wyrobu lakierowego - substancje lotne oraz nielotne składające się z substancji błonotwórczej, pigmentów i wypełniaczy.

Szpachlówka - stosowana zwykle na uprzednio zagruntowane lub nasycone podłoże w celu wyrównania powierzchni przed nałożeniem warstwy wyrobobu lakierowego.

Warstwa - jednorazowe wymalowanie lub powłoka otrzymana w jednej operacji nanoszenia wyrobu lakierowego.

Wymalowanie - świeża naniesiona lub niewyschnięta warstwa wyrobu lakierowego.

Wyrób lakierowy - materiał powłokotwórczy cieky lub stały (proszek) do nanoszenia na podłoże w postaci warstwy, która w odpowiednich warunkach tworzy stalą, związaną z podłożem powłokę o określonej wytrzymałości mechanicznej i określonych właściwościach ochronnych i dekoracyjnych. Głównym składnikiem jest substancja błonotwórcza składająca się z żywicy lub mieszaniny żywicy i różnych dodatków. W jego skład wchodzą również pigmente, barwniki, rozpuszczalniki, rozcieńczalniki i wypełniacze.
składniki materiałów
MALARSKICH
Podstawowe składniki stosowane do komponowania powłok można zaliczyć do trzech zasadniczych kategorii - rozpuszczalnik, żywica i pigment. Każda z tych kategorii odgrywa określoną rolę w powstawaniu powłoki. Żywica (lub spojówka) oraz rozpuszczalnik stanowią część płynną, czasami nazywaną nośnikiem. Ponieważ rozpuszczalnik wyparowuje podczas zestalania powłok, bywa on nazywany lotnym rozpuszczalnikiem. Historycznie, pierwsze farby były komponowane z użyciem roślinnych i ryb olejów (jako spojówka) oraz pigmentów mineralnych. Pierwsze rozpuszczalniki pochodziły z drzew, np. terpentyna. Obecnie żywice i rozpuszczalniki otrzymuje się z ropy naftowej, zaś wiele pigmentów otrzymuje się na drodze syntezy organicznej lub modyfikacji mineralnych.

Wśród składników wchodzących w skład materiałów malarskich możemy wyróżnić:

substanse blonotwórcze do których zaliczamy: żywice akrylowe, chlorokauczukowe, epoksydowe, filałowe, poliwinylowe, silikonowe, fenolowe, estry celulozowe, oleje, asfalty, bitumy, paki i.in.

Żywice, czyli spojówki, są częścią wyrobu malarskiego wytwarzającą warstwę. Są to zwykle stałe polimery o wysokiej masie cząstkowej. W niektórych przypadkach polimery o niskiej masie cząstkowej zmieszane z innym niskocząsteczkowym polimerem tworzą mieszaninę reakcyjną, z której powstaje nowy i wysokocząsteczkowy polimer. Żywica odpowiedzialna jest za wiele cech pokrycia. Tak więc, powłoki są zwykle rozpoznawane i klasyfikowane w oparciu o rodzaj polimeru tworzącego spojówkę. Najważniejsze cechy powłok związane z chemią żywic są następujące:

1. mechanizm i czas twardnienia,
2. zachowanie w rozmaitych środowiskach,
3. zachowanie na rozmaitym podłożu,
4. zgodność z innymi powłokami,
5. elastyczność i wytrzymałość,
6. odporność atmosferyczna,
7. przyczeplność,
8. łatwość nakładania kolejnych warstw i łatwość naprawy,
9. cechy użytkowe (zwilżalność, budowa, trwałość magazynowa itp.).

pigmenty dzielą się na organiczne i nieorganiczne, ale w większości są one związkami nieorganicznymi. Wprowadzane są do lakierów celem nadania powłoce właściwości dekoracyjnych lub zwiększenia właściwości ochronnych - antykorozyjnych.

Pigment stanowi część stałą niejednorodnej fazowo farby. Pigmenty są nierozpuszczalne w nośniku i są zasadniczo cięższe niż część ciekła farby. Dlatego mogą one osadzić się na dnie pojemnika, w którym składowana jest farba. Pigmenty naturalne są z zasady znacznie bardziej odporne na działanie światła naturalnego niż syntetyczne pigmenty organiczne.

Obecność pigmentu w powłoce wywołuje następujące pożądané cechy pokrycia:

1. krycie,
2. barwę,
3. hamowanie korozji,
4. odporność pogodowa,
5. odporność na wilgoć,
6. stopień połysku i twardość,
7. budowę i wzmocnienie warstwy.

Podstawową rolą pigmentu jest zapewnienie krycia podłoża i ochrona organicznej żywicy przed niszczącym działaniem słonecznego promieniowania ultrafioletowego. Żywice organiczne degradują się pod działaniem promieniowania słonecznego, jedne bardziej, inne mniej. Ditlenek tytanu, którego cechuje wysoka nieprzeźroczystość, jest najczęściej stosowanym pigmentem zapewniającym doświetlenie krycie farb białych i jasnych. Jeśli powłoka malarska nie zapewnia wystarczającego krycia podłoża, wówczas konieczne jest nałożenie kolejnej warstwy farby.

Inną istotną rolą niektórych pigmentów - wcześniej już wymienioną - jest zapewnienie ochrony przed korozją. Inhibitory korozji skutecznie hamują niszczenie podłoża metalowego. Pigmenty ołowioowe i chromianowe wykazujące działanie inhibicyjne na rozwój korozji, i w przeszłości powszechnie wykorzystywane, są obecnie zablokowane z powodu toksycznego działania na ludzi i środowisko.

Pigmenty mogą także poprawić przyczeplność oraz zmniejszyć przepuszczalność wilgoci. Pigmenty metaliczne takie jak aluminium wykazują skłonność do ukladania się w filmie w równoległej płaszczynny, które skutecznie zwiększają drogę jaką musi pokonać wilgoć aby osiągnąć podłoże.
2.3. Wypełniacze

Wypełniacze powodują zwiększenie przycznosności do podłoża, przycznosności międzywarstwowej farb podkładowych z emailami, odporności na ściekanie, twarczość, zmniejszenie polysku, zwiększenie zdolności do szlifowania oraz zmniejszenie przepuszczalności wody i gazów. Powodują również urozmaicenie łatwej odporności na wpływy atmosferyczne. Są to następujące związki: krzemiany, tlenki, siarczany i węglany. Stosowane są one głównie do farb podkładowych i szpachliów. Do najczęściej stosowanych wypełniaczy zalicza się: talk o budowie płatkowej, siarczan baru o białym kolorze, kredę, grafit o budowie płatkowej, węglk krzemiu.

2.4. Rozpuszczalniki

Rozpuszczalniki to ciecz, w których substancja błonotwórcza jest rozpuszczana bez zmiany właściwości chemicznych. Podstawowymi grupami rozpuszczalników są:

- rozpuszczalniki alifatyczne do których zaliczamy obojętne chemicznie węglowodory o budowie łańcuchowej, otrzymane przy destylacji ropy naftowej. Są to benzyna lakowa, benzyna lekka i do lakierów. Zaliczyć tu możemy jeszcze alkohole i glikole stosowane do farb nitro, epoksydowych, piecowych.

- Rozpuszczalniki chemiczne do których zaliczamy związki chemiczne, których obecność w farbie pozwala na ułatwienie nakładania farby, a jednocześnie layoutParams na wpływy pigmentu do spoiwa oraz ich skład chemiczny. Rozpuszczalniki mogą być: silny, średnio silny, słaby i bezwodny. Stosowane są do farb nitrocelulozowych.

2.5. Rozcieńczalniki

Rozcieńczalniki to substancje stosowane do rozcieńczania lakierów, są to substancje o niewielkim wpływie na organizm ludzki. Rozcieńczalniki to substancje organiczne o stężeniu zawartości wody w cieczce do 10%. Rozcieńczalniki mogą stanowić od 20% do 90% składu farby. Rozcieńczalniki nie wpływają na właściwości farby i mogą ułatwiać malowanie. Rozcieńczalniki mają wpływ na właściwości farby, takie jak niewilgocienie, przyczepność, twarczość i zdolność do utworzenia pokrywy. Rozcieńczalniki mogą być: silny, średnio silny, słaby i bezwodny. Stosowane są do farb nitrocelulozowych.

2.6. Środki pomocnicze

Środki pomocnicze to różnego rodzaju substancje dodawane do lakierów celem podniesienia ich właściwości użytkowych. Są to:
- środki przeciw kruszeniu,
- środki zwilżające, zagęszczające i tiksotropujące,
- absorbenty promieniowania UV (stabilizatory),
- inhibitory korozji,
- środki przeciw porostowym, zwalczające pleśń,
- środki bakterii- i grzybobójcze.

Pozostałe składniki wyrobów malarskich to m. in. substancje zapobiegające pienieniu, utrzymujące rozlewność, zmniejszające polysk, promotor adhezji, korektory lepkości.
podstawy tworzenia się powłok lakierowych
Procesy schnięcia (utwardzania powłoki) towarzyszą zmiany polegające na przejściu z fazy ciekłej (roztworu) w stan stałej (wyschnięta powłoka lakiernicza).

Wyróżnia się następujące rodzaje procesów schnięcia:
- schnięcie fizyczne (wyparowanie rozpuszczalnika z lakieru lub wody z emulsji),
- schnięcie z udziałem tlenu (utlenianie atmosferyczne),
- schnięcie chemiczne (reakcja chemiczna składników lub reakcja chemiczna z wodą (wilgocią) z powietrza).

Powłoki, które twardeją dzięki wyparowaniu rozpuszczalnika lub wody nie zmieniają się chemicznie w trakcie utwardzania. Nazywane są powłokami termoplastycznymi, ponieważ można je rozmieścić poprzez ogrzanie lub dodanie rozpuszczalnika.

Powłoki utwardzane chemicznie nazywane są termoutwardzonymi, gdyż nie dają się rozmieścić przez podgrzanie lub dodanie rozpuszczalnika.

Powłoki utleniające się w kontakcie z powietrzem (farby olejne) początkowo są termoplastycznymi, lecz po kilku miesiącach, wskutek postępującego usiściowania polimeru, powoli przekształcają się w powłoki termoutwardzone.

Powłoki twardejące poprzez odparowanie rozpuszczalnika bądź wody nazywane są czasem lakierami. Sporządza się je przez rozpuszczenie żywicy w odpowiednim rozpuszczalniku.

Po nałożeniu wyrobu na powierzchnię następuje powolne odparowywanie rozpuszczalnika, zaś żywica pozostaje w postaci stałej warstwy. W tym czasie nie zachodzą żadne chemiczne przemiany w powłoce.

Gdy stężenie rozpuszczalnika jest duże zachodzi intensywny proces schnięcia zaś na powierzchni powłoki tworzy się warstwa żelu (utrudnia to odparowywanie) i odparowują resztki rozpuszczalnika najsilniej związane z substancją błonotwórczą.

Intensywność odparowywania zależy od lotności rozpuszczalnika, temperatury otoczenia, powierzchni parowania i składu wyrobu malarskiego. Zakłócenia procesu parowania powodują powstanie ruchów wirowych w powłoce. W wyniku czego tworzą się drobne kratery na powierzchni przypominające skórkę pomarańczową.

Do tej grupy substancji błonotwórczych należą: polimery i ich mieszaniny, żywice syntetyczne (chloorakauczuk, kopolimery chlorku winylu) oraz naturalne (szelak, kalafonia), powłoki bitumiczne (smoka węglowa, asfalty), estry celulozy.

Lateks i inne wodne wyroby również twardeją w rezultacie prostego odparowania. Po odparowaniu wody, emulgowane cząstki żywicy ulegają koalescencji i w efekcie powstaje warstwa. Powłoki te zwykle zawierają pewną ilość rozpuszczalnika organicznego, który ułatwia formowanie stałej powłoki oraz połepsza aplikację wyrobu na pokrywaną powierzchnię. Powłoki lateksowe są całkiem elastyczne i raczej bardziej przepuszczalne niż wyroby olejne i alkidowe.

Przykłady wyrobów lateksowych: 1. akryle, 2. winyle (octany poliwinylowe).

Znane i stosowane są także inne wodne wyroby malarskie, które jednak twardeją inaczej niż poprzez prosty odparowanie wody. Trzy podstawowe rodzaje takich wyrobów obejmują: 1. wodorozpuszczalne, 2. redukujące się w wodzie, 3. emulsje.

Powłoki rozpuszczalne w wodzie nie są wystarczająco trwałe do powszechnego użytku. Farby redukowane w wodzie zawierają mieszankę rozpuszczalników, która może być rozcieńczona wodą. Formuły alkidowe i epoksydowe dostępne są w postaci redukowanej w wodzie lub emulsyjnej. Pokrycia alkidowe tego typu twardeją poprzez utlenianie atmosferyczne, natomiast wyroby dwuskładnikowe twardeją na drodze reakcji chemicznej.
3.2. procesy schnięcia z udziałem tlenu

utlenianie atmosferyczne nienasyconych olejów schnących

Materiały błonotwórcze podlegające tym procesom to głównie oleje roślinne, produkty modyfikacji tych olejów innymi związkami lub żywice syntetyczne modyfikowane olejami lub pochodnymi olejów.

Role składnika aktywnego stanowi tu olej lub produkt jego wstępnej przemiany. Są to procesy samooutleniania (autooksydacja) oraz polimeryzacja tlenowa (oksypolimeryzacja) i addycyjna substancji błonotwórcze.

Olej roślinny zawarty w farbach olejnych w trakcie wysychania reaguje z tlenem zawartym w powietrzu. Oleje roślinne zawierają głównie trójglierydy nienasyconych kwasów tłuszczowych (utlenieniu ulega łączuch nienasycony kwasy tłuszczowe, najczęściej w miejscu grup metylenowych z utworzeniem wodoronadtlenku). Wynikiem tej reakcji chemicznej jest wysycenie podwójnych wiązań kwazów tłuszczowych zawartych w oleju i w rezultacie zestalenie powłoki. Do wyrobów olejnych zwykle dodaje się związki metali, które działają jako katalizatory reakcji utwardzania olejów roślinnych.

W efekcie działania tlenu w powłoce znajdują się też różnorodne produkty powstałe w wyniku reakcji łączuchowej występujące w różnych stadiach wzrostu cząsteczk. Oddziaływanie tlenu na powłokę nie ustaje po wyschnięciu powłoki, ponieważ pod wpływem tlenu zachodzą procesy degradacji łączuchów polimeru.

Przykłady wyrobów utwardzanych zgodnie z powyższym mechanizmem:
1. niemodyfikowane oleje schnące, 2. alkidy, 3. alkidy silikonowe, 4. estry epoksydowe, 5. oleożywyczne fenole.

Powłoki twardniejące pod wpływem reakcji chemicznej są zwykle najtrwalsze. Pakuje się je do dwóch oddzielnych pojemników, których zawartość należy zmieszać aby zainicjować reakcje utwardzania. Składniki należy zmieszać w ściśle określonych przez producenta proporcjach dla osiągnięcia oczekiwanych rezultatów. Czasami konieczny jest czas indukcji po zmieszaniu, a przed rozpoczęciem malowania, który pozwala na właściwe zaawansowanie reakcji. Okres ten nie może być zbyt długi ponieważ może spowodować twardzenie wyrobu jeszcze przed nałożeniem warstwy i wówczas nakładanie będzie utrudnione, zaś powłoka nie osiągnęła optymalnych parametrów dekoracyjnych i ochronnych.

Procesem tym podlegają życie termoutwardzalne oraz chemoutwardzalne.

Żywice termoutwardzalne - zastępują się tworząc powłokę na skutek jednej z reakcji:
- polimeryzacja - reakcja łączenia się prostych związków malocząsteczkowych (monomerów) w związek wielocząsteczkowy, zwy polimerem, bez wydzielenia produktów uboczych,
- polikondensacja - reakcja, w której małe cząsteczki reagując ze sobą tworzą większą cząsteczkę nowego związku z równoczesnym wydzieleniem się produktu uboczego w postaci prostego związku chemicznego (wody, chlorowodoru),
- poliladdycja - reakcja przypomina zarówno polimeryzację jak i polikondensację; w czasie tej, reakcji nie wydzielają się produkty uboczne jednakże często zachodzi przegrupowanie atomów monomerów.

Żywice chemoutwardzalne - proces utwardzania zachodzi na skutek jednej z reakcji prowadzących do wzrostu cząsteczk (tworzenie polimeru) w temperaturze otoczenia pod wpływem różnych substancji chemicznych - utwardzaczy.

Przykłady wyrobów twardniejących w wyniku reakcji chemicznych:
1. epoksydy, 2. epoksydy ze smolą węglową, 3. poliuretan, 4. polieryt.

Wyroby te wykazują bardzo dobrą odporność na chemikalii i rozpuszczalniki ponieważ są termoutwardzalne. Wskutek tego zło przyjmują kolejne warstwy, gdyż rozpuszczalnik nie może penetrować silnie stwardnialej powłoki spodniej. Tak więc najlepiej jest nakładać kolejne warstwy zanim nastąpi całkowite stwardnienie podwarstwy. Jeśli występuje konieczność nakładania farby na w pełni stwardnialą podwarstwę, wówczas należy pokryć ją bardzo cienką międzywarstwą farby i pozwolić jej częściowo stwardnieć.

Innym przypadkiem chemicznie utwardzanej powłoki jest cynkowa farba nieorganiczna. Typ reakcji biegnących podczas twardnienia tego wyrobu zależy od konkretnego składu wyrobu malarskiego. Zazwyczaj są to reakcje obejmujące hydrozę (reakcje z udziałem wody z powietrza) silikonowego spojwa. Ponieważ woda pochodzi z powietrza twardnienie może przebiegać powoli w suchej atmosferze.

Organiczne powłoki bogate w cynk, z kolei, twardnieniu wskutek reakcji chemicznych pomiędzy składnikami wyrobu. Epoksydy zawierające cynk twardnią w wyniku reakcji, zaś poliwinyle bogate w cynk twardnią wskutek odparowania rozpuszczalnika.
rodzaje wyrobów LAKIEROWYCH
typu spojwa

farby alkidywne (ftalowe) do ich produkcji używa się żywic alkidowych tłustych, półtłustych i chudych. Większość żywic alkidowych zawiera w swoim składzie bezwodnik ftalowy dlatego też nazywa się je ftalowymi. Farby ftalowe są łatwe do stosowania i mają dobrą rozlewność co podkreślą ich uniwersalność, dlatego z uwagi na swoje właściwości są chętnie stosowane do prac renowacyjnych. Niestety wyroby te jeśli stosowane są na zewnątrz czasami wykazują tendencję do żółnięcia co spowodowane jest pękanieniem podwodnych wiązan C=C w cząsteczkach żywicy. Powłoki farb alkidywowych ulegają zmyldeniu, miękką w wodzie, poza tym nie są odpornne na chemikalia i rozpuszczalniki. Słaba odporność na środowisko alkaliczne (ulegają zmyldeniu) uniemożliwia ich stosowanie na świecie tynki i powierzchnie cynkowe (ocynkowane). Farby alkidywne są wyrobami, które schną pod wpływem wiązania tłenu z powietrza, dlatego nie powinno stosować się zbyt grubych warstw aby nie utrudniać dostępu tłenu do wewnętrznych części warstwy.

farby poliwinylowe stosuje się je tam, gdzie wymagana jest podwyższona odporność korozjenną (konstrukcja stalowe; mostowe; specjalnego przeznaczenia). W porównaniu do farb chlorokauczukowych mają większą twardość i wyższe właściwości dekoracyjne. Są bardziej odpornie na działanie czynników chemicznich (kwasy i zasady oraz oleje mineralne i alfityczne rozpuszczalniki, nie są odpornie na estery i ketony (np. aceton). Ponieważ schną fizycznie, to ze względu na dużą lotność rozpuszczalników często podczas malowania w czasie ciepłej i suchej pogody dochodzi do zbyt szybkiego ich odparowania i do malowanej powierzchni docierają wyschnięte cząstki farby (jest to tzw. efekt "suchego natrysku").

farby epoksydowe są to farby dwuskładnikowe, wysychające przez reakcję chemiczną żywicy i utwardzacza (zmieszanych ze sobą tuż przed malowaniem w odpowiednich proporcjach). Po całkowitem utwardzeniu, powłoka jest bardzo twarda (twardość względem szkła wynosi 0,5 - 0,7) oraz bardzo odporna na czynniki mechaniczne. Wykazuje bardzo dobrą odporność na wodę, oleje, wiele rozpuszczalników i zasady (nawet stężone). Nie są odpornie na stężone kwasy oraz promieni UV przez co nie powinny być stosowane w miejscach nasłonecznionych (silnie kredują).

farby poliuretanowe są to również farby dwuskładnikowe utwardzane chemiczne (dostępne są także jednoskładnikowe, gdzie drugim składnikiem jest wilgoć z powietrza). Pod względem odporności i właściwości mechanicznych są podobne do epoksydów, z tym że nie wykazują kredowania pod wpływem UV. Ponieważ farbę schną chemicznie przez przyłączenie grupy OH rozpuszczalniki muszą być bezwodne i wolne od alkoholi, także opakowania powinny być bardzo szczelnie zamknięte. W czasie aplikacji temperatura powinna wynosić powyżej 5 °C.

4.1.2. sposób wysychania powłoki

sposobu wysychania powłoki

- schnięcie fizyczne zachodzi pod wpływem odparowania rozpuszczalnika (rozcieńczalnika) i zazwyczaj jest odwrażalne (przy ponownym użyciu rozpuszczalnika możliwe jest rozpuszczenie powłoki).

- schnięcie chemiczne zachodzi pod wpływem reakcji chemicznej (wiązanie tlenu lub wilgoci z powietrza, lub reakcji z drugim składnikiem farby (utwardzaczem)).

4.1.3. funkcja w zestawie lakierniczym

zastosowania i funkcji w zestawie lakierniczym

grunty są to farby mające bezpośredni kontakt z podłożem i będące do niego dopasowane (np. grunty do drewna muszą mieć bardzo dobrą penetrację i zawierać środki grzybobójcze, natomiast grunty do metalu muszą zawierać pigment antykorozjny). Powinny być łatwe w szlifowaniu i szybko schnąć. Grunty nie muszą mieć wafortów ozdobnych.

międzywarstwa są to farby służące głównie jako powłoki do ochrony barierowej, oraz maskujące ubytki powierzchni. Powinny być łamane w szlifowaniu oraz wykazywać pewną odporność na czynniki zewnętrzne (ze względu, że czasami międzywarstw pokrywa się emalią po dłuższym czasie).

emalia są to wyroby nawierzchniowe, posiadające duże walory dekoracyjne, powinny być odpornie na czynniki mechaniczne i atmosferyczne.

gruntoemalie są połączeniem gruntu i emali, służą przede wszystkim do czasowego zabezpieczenia metalu przed korozją (np. wykonawca maluje przedmiot a odbiorca przemalowywuje go na odpowiedni dla siebie kolor). Muszą więc posiadać zarówno właściwości dekoracyjne jak i antykorozjne.

4.1.4. rodzaj rozcieńczalnika

rodzaju rozcieńczalnika

wyroby wodorozcieńczalne (dyspersyjne) są to z reguły wyroby akrylowe będące zawiesiną cząstek farby w wodzie. Głównie stosuje się je do malowania podłoży mineralnych i drewnianych.

wyroby rozpuszczalnikowe gdzie rozpuszczalnikiem jest ciec organiczna.
- rozpuszczalniki alifatyczne,
- rozpuszczalniki aromatyczne,
- aldehydy, ketony, alkohole.

4.1.5. ilość składników

ilość składników farby dostarczanej do wykonawcy

jednoskładnikowe schnące fizycznie poprzez odparowanie rozpuszczalnika lub wiązanie tlenu z powietrza (farby alkidowe).

dwuskładnikowe schnące przez reakcję chemiczną składników farby (epoksydy) lub przez wiązanie wilgoci (niektóre poliuretany).

4.2. charakterystyka wyrobów malarskich

Powłoki malarskie nakładają się na rozmaite podłoża, najczęściej jest to metal, drewno, beton. Powłoka malarska stanowi barierę, która zatrzymuje większość wilgoci, tlenu, światła i innych składników atmosfery na drodze do powierzchni ochranianego przedmiotu. Oprócz działania ochronnego, przeciwickorożyjnego lub przeciwiognitnego, powłoki malarskie spełniają także cały szereg innych zapotrzebowan:

- kosmetyczny wygląd - jest istotnym elementem podbudowującym morale,

- oznakowanie - farby znakujące używane są na lotniskach, ulicach, autostadach, parkingach. Ich podstawowym zadaniem jest zapewnienie bezpieczeństwa personelu i sprzętuw.

- barwy ochronne i ostrzegawcze - stosowane w urządzeniach wojskowych i w celu szybkiego rozpoznania zagrożenia lub zabezpieczenia sprzętu,

- wykończenie odblaskowe - odblaskowe wykończenie betonowych podłóg hangarów i sklepów może zwiększyć jasność pomieszczeń, ponadto pozwala na łatwiejsze utrzymanie czystości,

- powierzchnie niepośligzowe - farby tego typu nakładają się na podłogi, rampy, ścieżki spacerowe, a także wykonuje się z nich poziome oznakowanie na jezdniach,

- powłoki przeciwporostowe - zapobiegają przywieraniu roślin do powierzchni urządzeń płynących, działanie tych powłok polega na uwalnianiu toksycznych substancji.
Farby alkidowe inaczej zwane są ftalowymi, ponieważ większość żywic alkidowych zawiera w swoim składzie bezwodnik ftalowy. **Farby ftalowe należą do wyrobów lakierowych**, czyli pod wpływem oddziaływania z tlenem. Olej zawarty w farbie reaguje z tlenem i tworzy powłokę. Reakcje sieciowania przypisywane są alkaliczne (np. powierzchnie pokryte farbami krzemianowymi). Na właściwości farby wpływa rodzaj i ilość kwasów tłuszczowych obecnych w cząstecze żywicy alkidowej.

Farby ftalowe są łatwe do stosowania i mają dobrą rozlewność. **Powłoki uzyskane z nich wykazują dobrą odporność na czynniki atmosferyczne**, po pewnym czasie jednak tracą połysk i wykazują pewien stopień skredowania. Ulegają również zmydniemu, mięknią w wodzie i nie mogą być stosowane do malowania powierzchni narażonych na ciągły kontakt z wodą. Nie są także odporne na działanie chemikaliów i rozpuszczalników. Farb ftalowych nie zaleca się stosować do nanoszenia na powierzchnie alkaliczne (np. powierzchnie świeżych tynków, powierzchnie ocynkowane czy pokryte farbami krzemianowymi).

Do produkcji farb alkidowych stosuje się żywice alkidowe tłuste, średnie oraz chude. **Podział ten jest uzupełniony od ilości użytego oleju.** Żywice ftalowe zawierają:

- tłuste - 58-89% oleju,
- średnio tłuste - 46-58% oleju,
- chude - poniżej 46%.

Farby ftalowe oparte na tłustych żywicach alkidowych dobrze zwilżają podłoże, lepiej niż inne spojrza. Uzyskane powłoki wykazują dobrą przyczepność do podłoża, elastyczność, wysoki połysk oraz odporność na działanie czynników klimatycznych. Najkrótszym czasem schnięcia, przy równocześnie dobrzej odporności na działanie światła słonecznego, charakteryzują się żywice zawierające olej salforowy oraz kwas tłuszczowy oleju lnianego o zwiększonym udziale kwasu lnolowego. Żywice alkidowe tłuste na bazie oleju lnianego charakteryzują się pewną tendencją do żółknienia, przy stosunkowo dobrym schnieciu powłoki.

Żywice alkidowe średnio tłuste są to głównie gatunki wytworzane z zastosowaniem olejów tłustych, przeważnie oleju lnianego lub jego mieszaniny z olejem tungowym lub sojowym. W porównaniu z żywicami alkidowymi tłustymi charakteryzują się one szerszym wylewaniem i wyższą twardością powłok, natomiast ustępują im pod względem połysku, elastyczności i trwałości. Żywice alkidowe chude zawierają małe ilości kwasów tłuszczowych. Są one wykorzystywane przede wszystkim w kompozycji z żywicami aminowymi (melaminowymi i mocznikowymi) do tworzenia wyrobów lakierowych schnących w temperaturze 80-150°C.

Farby ftalowe stosowane są chętnie do wymalowań renowacyjnych. Nie można ich jednak stosować w grubyach warstwach. Farby ftalowe schną przez przyłączenie tlenu z powietrza, a grupa powłoka z farby utrudnia dostęp tlenu do dolnych warstw powłoki. Aby poprawić właściwości farb ftalowych, żywice alkidowe używane do ich produkcji poddaje się rozmaitym modyfikacjom. Modyfikacja żywicami fenolowymi nadaje połysk oraz uodpornia powłoki na wodę i alkalia.

Żywice alkidowe modyfikowane żywicami poliwnylowymi stanowią zwykle spojrą farb do gruntowania, na które można nakładać większość wyrobów międzywarstwowych i nawierzchniowych. Składnik alkidowy jest odpowiedzialny za przyczepność i odporność termiczną, natomiast poliwnyłowy za odporność na wodę i chemikalia. Modyfikacja żywicami silikonowymi zapewnia powłoce większą trwałość, odporność na podwyższoną temperaturę i na środowisko wilgotne, oraz lepsze zachowanie połysku. Żywice alkidowe mogą być również modyfikowane poliszczycianinami w celu zwiększenia szybkości wysychania oraz poprawy odporności na ścieranie i chemikalia.
4.2.2. farby chlorokauczukowe

Ponieważ powłoki wykonane z farb chlorokauczukowych są bardzo porowate, do uzyskania pozbawionej porów błony konieczne jest co najmniej 4-krotne malowanie. Powłoki wykonane farbami chlorokauczukowymi nie są odporne na wysoką temperaturę. Emaille chlorokauczukowe ogólnego stosowania nadają się do malowania urządzeń i konstrukcji metalowych lub żeliwnych, betonu, tynków wapiennych i cementowych. Podłoże pod farby chlorokauczukowe wymaga odpowiedniego przygotowania powierzchni, zwykle obróbki strumieniowo-ściernej. Nakładanie prowadzi się poprzez natrysk bezpowietrznym albo za pomocą walka.

4.2.3. farby dyspersyjne

Farby dyspersyjne są łatwe i wygodne w stosowaniu. Nie wymagają specjalnego przygotowania i są jednostronnikowe. Dobrze kryją zabrudzenia i dają ładny efekt dekoracyjny. Łatwo się rozprowadzają po malowanych powierzchniach. Farby akrylowe charakteryzują się większą trwałością niż winylowe, lecz są od nich nieco droższe. Farby emulsyjne są odporne na zmywanie, przepuszczają parę wodną i gazy w 40-50% oraz charakteryzują się trwałością koloru. Są szybko schnące. Powłoki pokryte farbami dyspersyjnymi są odporne na działanie czynników atmosferycznych.

4.2.4. farby klejowe
Farby klejowe, to kompozycje zawierające jako spoivo wodny roztwór kleju roślinnego, zwierzęcego lub glikocelii. Wypełniaczami są kreda pławiona oraz pigmenty organiczne i nieorganiczne. Stosowane są głównie do malowania tynków wewnątrz budynków w celach dekoracyjnych, artystycznych (farby akwarelowe) lub ochronnych. Farby klejowe proszkowe są mieszaniną pigmentów wypełniacznych i klejów. Przed malowaniem mieszanka się do podziałki wodną w proporcji odpowiedniej dla danej farby.

4.2.5. farby ogniochronne
Służą do malowania nowych i używanych powierzchni podłóg i ścian. Dają powłokę trwałą, o dużej odporności mechanicznej i chemicznej. **Szczególnie nadają się do pomieszczeń magazynowych, garaży lub piwnic.** Można je stosować na suchą, przeszliżowaną i odpoloną powierzchnię. Stare powłoki alkidowe, akrylowe i epoksyestrowe muszą zostać usunięte. **Powierzchnie pomalowane wcześniej środkami epoksydowymi należy poddać frezowaniu i odkurzeniu.** Podłoże musi być zabezpieczone przed przenikaniem wilgoci z podłoża. Wilgoć może powodować powstanie wielu niekorzystnych reakcji chemicznych, prowadzących do zniszczenia betonu. Spoiwem farb epoksydowych są żywice epoksydowe - to tworzywa chemotwardzalne (duropolasty), zawierające co najmniej dwie grupy epoksydowe w cząsteczce. Mają postać gęstych cieczy lub łatwo topliwych ciał stałych.

Farba epoksydowa jest dwukomponentowa. Składa się z bazy i utwardzacza. **Bardzo ważnym czynnikiem jest właściwe wymieszanie obu składników.** Należy przestrzegać proporcji podanych przez producenta i temperatury prowadzenia mieszania. Po wymieszaniu farba powinna być użyta w ciągu 30 min. Nakładając ją należy walkiem lub gumową ściągaczką i rozprowadza rolką. Druga warstwa może być nałożona nie wcześniej niż 10 godzin po pierwszej, ale nie później niż 24 godz. Temperatura w pomieszczeniu nie może spaść poniżej 15°C.

Do powierzchni ścianami przeznaczona jest wodno-emulsyjna farba epoksydowa. Nie zawiera rozpuszczalników organicznych. Daje powierzchnię trwałą z połyskiem. Idealna jest do pomieszczeń, w których muszą zostać spełnione specjalne wymagania co do czyszczenia i dezynfekcji. **Szczególnie przydatna jest w szpitalach, laboratoriach, oddziałach produkcyjnych mokrej, w przechowywaniu żywności.** Idealna jest do pomieszczeń mechanicznych i chemicznych przeznaczona jest wodno-emulsyjna farba epoksydowa. Ograniczenie jej stosowania stanowi zarówno w krótkim czasie schnięcia, jak i bardzo dobrą przyczepnością do podłoża.

Farby drukarskie. Ogólnie farby drukarskie dzielą się na dwa podstawowe grupy - farby przeciwręczne i farby drukarskie. **Farby przeciwręczne**, stosowane w drukach na papierze i tkaninach, są otrzymywane przez emulsjonowanie wodą, a następnie suszenie na specjalnym papierze. **Farby drukarskie** dzielą się na dwa podstawowe rodziny - farby typograficzne i farby tuszowe.

Farby typograficzne to farby używane w procesie drukowania, które są zazwyczaj otrzymywane przez emulsjonowanie wodą. **Farby tuszowe**, używane w procesie drukowania na tkaninach, są otrzymywane przez emulsjonowanie olejami i następnie suszenie na specjalnym papierze.

4.2.9. farby poliuretanowe

Są to materiały powłokowe, których substancjami blonotwórczymi są poliuretany. Farby poliuretanowe stosowane są do malowania powierzchni stalowych, z metali lekkich, drewna i betonu. **Skladają się z dwóch komponentów:** lakieru właściwego i utwardzacza. **Jako utwardzacz używa się roztworu żywicy poliizocjanowej.** Obydwa składniki należy wymieszać w odpowiednich proporcjach bezpośrednio przed malowaniem. Powłoki uzyskane z lakieru poliuretanowego charakteryzują się doskonałą przyczepnością do większości podłoże, dobrymi właściwościami eksploatacyjnymi. Są odporne na działanie wody, wilgoci i środków czyszczących. Farby poliuretanowe sieciują w wyniku reakcji grup hydroksylowych –OH, pochodzących od podstADOWEGO (poliol) z izocyjanianami –NCO grupami utwardzacza. **Farby poliuretanowe mogą utwardzać się również pod wpływem wilgoci z powietrza.**

Do zabezpieczania powierzchni szczególnie obciążonych użytkowo, takich jak podłogi muzeów i sal sportowych, również polecane są specjalistyczne lakierki poliuretanowe. Technika ich aplikacji jest analogiczna jak w przypadku zwykłych lakierów. Lakier poliuretanowe należą do wyrobów chemoutwardzalnych. Twardniej są czynnikiem wodnym, odpylić się nie można, a więc są nieodpowiednie do malowania powierzchni stalowych, z metali lekkich, a także do malowania powierzchni przedmiotów z pary wodnej, formaldehydu. Wszelkie prace z wykorzystaniem lakierów poliuretanowych należy prowadzić przy zapewnieniu dobrej wentylacji. Po pomalowaniu pomieszczenia należy je sezonować przez 2 tygodnie przed oddaniem do użytkowania. Bezpieczeństwo powinno się przestrzegać przepisów przeciwpożarowych.

4.2.10. farby wapienne

Farby wapienne są roztworami mleka wapiennego. Mleko wapienne jest zawieszką wapna gaszonego w wodzie. Stosowane jest jako składnik zapraw murarskich, farb do wymalowań zewnętrznych, do odkazania i do neutralizacji. **Farba wapienna jest jedyną farbą przemysłową bez ograniczeń do wymalowań obiektów zabytkowych.** Charakteryzuje się ona bardzo dobrą przepuszczalnością pary wodnej, wysoką wodochłonnością i brakiem połysku. **Duża nasiąkliwość tych farb powoduje, że chronią elewację krótko.** Reakcją zachodzącą podczas procesu wiązania farb wapiennych jest karbonizacja.

4.2.11. farby termometryczne

Są to farby (tzw. termokolory) zawierające chemiczne związki metali (np. kobaltu, chromu), zmieniające barwę wraz ze zmianą temperatury. Stosowane w przemyśle do kontroli temperatury części maszyn.
Spowodowane w farbach krzemianowych jest potasowe szkło wodne. Dzięki niemu powłoka wykonana z farby silikatowej jest przepuszczalna dla pary wodnej, doskonale oddaje fakturę malowanych powierzchni, nie zamyka porów, przez co umożliwia oddychanie muru. Obiekty zabytkowe często są w złym stanie ze względu na zieleniejące zniszczone powierzchnie, które zabiegują, które zabiegują przed czynnikami atmosferycznymi niemiłosprawdza, niemiłosprawdza swobodny przepływ pary wodnej. Dużą zaletą farb silikatowych jest możliwość malowania świeżych tynków cementowo-wapiennych przed zakończeniem procesu karbonizacji. Skraca to w znacznym stopniu przerwy technologiczne.

Farba krzemianową (silikatową) stosuje się, wraz z preparatem gruntyującym, na zewnętrznej i do renowacji wnętrz oraz malowania pierwotnego. Pasty pigmentowe używane w systemach barwienia zapewniają kolorom trwałość. Pozwalają uzyskać dużo więcej odcieni i utrzymują paletę kolorów w spojowej tonacji pastelowej. Węglikso obiektów farb farb silikatowych ma charakter zabytkowy i używane do ich renowacji farb dyspersyjnych, o jaskrawych, żywych kolorach, zniszczonych i wizerunku ich wizerunku. Przed malowaniem stare fasady zaleca się zmyć wodą pod ciśnieniem, a podłoża bezzwłocznie zagraniczyć preparatem silikonowym. Zapewni to farbie silikatowej prawidłowe wysychanie i zapobiegnie odcianiu z niej wody. Powłoka wykonana z farby silikatowej jest przepuszczalna dla pary wodnej i doskonale oddaje fakturę malowanych powierzchni. Dużą zaletą farb silikatowych jest odporność na zabrudzenia z uwagi na brak ładunku elektrostatycznego.

Rolę spoiwą pełnią w nich polimery krzemoorganiczne. Farby silikonowe łączą w sobie zalety farb silikatowych i dyspersyjnych. Charakteryzują się dużą odpornością na wiele czynników chemicznych, takich jak spaliny, słońce, oзон, kwaśne deszcze, tynki amoniaku, tlenki siarki i fosforu. Można je nanosić przy niskich temperaturach, a jedynym warunkiem jest ochrona farby przed wilgietą powietrza, temperatura i właściwości gusciwych kolorach, zniszczonych i wizerunku ich wizerunku. Układ „szczotki molekularnej” powoduje, że woda nie ma dostępu do wnętrza materiału. Nie hamuje jednak tynków pary wodnej i dwutlenku węgla. Ma to na celu wzmocnienie powłoki i wyrównanie jej chłonności.

- 23 -
wybór
POWLOKI
Wybór odpowiedniego materiału malarskiego rozpoczyna się od określenia oczekiwanych właściwości pokrycia:

a) odporność na oddziaływanie otoczenia (trwałość koloru i polysku),
b) odporność na działanie wody i chemicików,
c) odporność na ścieranie, cięcie i płesnie,
d)gląd (kolor, połysk, tekstura),
e) czas schnięcia,
f) łatwość nakładania i konserwacji.

Warunki nakładania i pracochłonność:

a) wymagany sposób przygotowania powierzchni,
b) kwalifikacje personelu wykonującego pokrycie,
c) potrzebny sprzęt,
d) wymagane rusztowanie.

Wyjątkiem od tej zasady są nieorganiczne powłoki cynkowe, ponieważ zwykle złączą się ze sobą, dlatego najlepiej pokrywać je organicznymi wyrobami cynkowymi. Prosty test pozwalający na określenie właściwości pokrycia na działanie rozpuszczalników polega na pokierowaniu powłoki szmatką nałożoną metyloetyloketonem lub acetonom i obserwacji zabrudzenia. Jeśli szmatka "chwytła" barwę wówczas farba określana jest jako rozpuszczalna, w przeciwnym przypadku określa się ją mianem nierozpuszczalnej. Innym praktycznym sposobem badania zgodności polega na wymalowaniu fragmentu podłoża i obserwacji przez kilka dni (konajmniej 3 dni) testowanej powierzchni. Należy zwracać uwagę na takie elementy jak plamienie podłoża, zmarszczenia, utratę przyczepności. Testy te mają przybliżony charakter gdyż niektóre wady wynikające z niezgodności mogą ujawnić się dopiero po kilku miesiącach.

Powłoki powstałe z wyrobów o odmiennym składzie chemicznym i ponadto różniące się nie tylko właściwościami chemicznymi i fizycznymi ale także różniące się mechanizmem tworzenia się są na ogół niezgodne ze sobą. Natomiast powłoki tego samego typu i twardniejszą według tego samego mechanizmu są zwykle zgodne ze sobą. Poniższa tabela pokazuje listę zgodności i niezgodności powłok różnego typu.

<table>
<thead>
<tr>
<th>Wada</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>krawawienie</td>
<td>efekt krawawienia może się pojawić jeśli powłoka rozpuszczalnikowa zostanie nałożona na istniejące pokrycie bitumiczne. Rozpuszczalnik rozpuszcza materiał bitumiczny i taki roztwór może penetrować warstwę nawierzchniową powodując pojawienie się brązowych plam. Zjawisko to nie wpływa na właściwości ochronne pokrycia, powoduje natomiast obniżenie walorów estetycznych powłoki.</td>
</tr>
<tr>
<td>odrzwanie się starzej farby od podłoża</td>
<td>silne rozpuszczalniki w powłoce nawierzchniowej mogą penetrować starą powłokę i obniżyć jej adhezję do podłoża. Może to wpłynąć na przyczepność całego pokrycia do ochranianej powierzchni.</td>
</tr>
<tr>
<td>pękanie warstwy nawierzchniowej</td>
<td>niezgodność może nastąpić jeśli względnie sztywna warstwa wierzchnia nałożona jest na istniejące elastyczne pokrycie. W takim układzie zewnętrzna warstwa może pękać wskutek występujących naprężeń pomiędzy starą i nową warstwą.</td>
</tr>
<tr>
<td>dla przyczepności lateksowych warstw nawierzchniowych do emali</td>
<td>często występujący problem złej przyczepności pokryć emulsyjnych do gładkich powierzchni całkowicie stwardnialnych i gładkich pokryć emaliowych czy gipsowych jest spowodowany niewielką ilością rozpuszczalników organicznych zdolnych do penetracji podłoża. Środkiem zaradczym może być mechaniczne nadanie powierzchni odpowiedniej szorstkości lub nałożenie odpowiedniego olejnego gruntu.</td>
</tr>
<tr>
<td>farby olejne na alkalicznym podłożu</td>
<td>wilgotne i alkaliczne warunki powodują powolny rozkład farb olejnych wskutek reakcji hydrolizy. Proces degradacji jest nieuchronny, zaś jego szybkość zależy od specyficznego składu wyrobu oraz od warunków środowiskowych.</td>
</tr>
</tbody>
</table>
wady powłok MALARSKICH
<table>
<thead>
<tr>
<th>opis wady</th>
<th>możliwe przyczyny wystąpienia wady</th>
<th>sposoby zapobiegania i usuwania wad</th>
</tr>
</thead>
<tbody>
<tr>
<td>pęcherze utworzone na skutek miejscowej utraty przyczepności powłoki do podłoża.</td>
<td>nanoszenie farby alkidowej lub olejnej na wilgotne lub mokre podłoże.</td>
<td>jeżeli pęcherze nie wniknęły samoczynnie do podłoża. Należy usunąć je przez zeskrobanie i szlifowanie papierem ściernym, a następnie należy malować emaliami.</td>
</tr>
<tr>
<td></td>
<td>wystawienie powłoki farby dyspersyjnej wkrótce po wyschnięciu na działanie dużej wilgotności lub wody, szczególnie gdy podłoże nie było odpowiednio przygotowane.</td>
<td>usunąć pęcherze przez zeskrobanie i szlifowanie papierem ściernym. Pamiętając o zagrunтовaniu podłoża lub pomalować farbą podkladową, przed nałożeniem warstwy nawierzchniowej.</td>
</tr>
<tr>
<td>niepożądane zlepienie się dwóch pomalowanych powierzchni gdy są one dociśnięte do siebie (np. sklejanie drzwi z ościeżnicą).</td>
<td>nie zapewnienie wymaganego czasu dla wyschnięcia powłoki przed zamknięciem drzwi lub okien.</td>
<td>używać farb alkidowych.</td>
</tr>
<tr>
<td></td>
<td>użycie farb akrylowych szczególnie w miejscach styku ościeżnicy ze skrzydłem.</td>
<td>użycie farb akrylowych mających wyszą odporność na sklejanie się powłok niż farby akrylowe.</td>
</tr>
<tr>
<td>nadawanie polysku powłoce w wyniku tarcia na sucho, szorowania lub pocierania.</td>
<td>użycie matowej farby w obszarze o dużym natężeniu ruchu, podczas gdy wskazany byłby tam wyższy stopień polysku powłoki.</td>
<td>powierzchnie wymagające regularnego mycia i czyszczenia, przez co narażone są na ścinanie (np. drzwi lub okna) należy malować emaliami z polyskiem, ponieważ ten rodzaj farby jest łatwy do utrzymania w czystości.</td>
</tr>
<tr>
<td></td>
<td>ocieranie przedmiotami (np. tkaninami, meblami) o ścianę. Częste mycie i usuwanie plam.</td>
<td>w miejscach o bardzo dużym natężeniu ruchu należy stosować farby z polyskiem lub półmatowe.</td>
</tr>
<tr>
<td></td>
<td>użycie farb o niskiej odporności na mycie lub szorowanie.</td>
<td>pomalowane powierzchnie należy czyścić używając miękkiej tkaniny lub ściereczki. Nie używać środków ścinających, splukiwać czystą wodą.</td>
</tr>
</tbody>
</table>
6. wady powłok malarskich
6.1. wady wewnętrzne

<table>
<thead>
<tr>
<th>opis wady</th>
<th>możliwe przyczyny wystąpienia wady</th>
<th>sposoby zapobiegania i usuwania wad</th>
</tr>
</thead>
<tbody>
<tr>
<td>utrata szczelności zestawu powłokowego</td>
<td>zniknięcie początkowej adhezyj i elastyczności masy uszczelniającej, prowadzące do jej pękania i łuszczenia się z powierzchni.</td>
<td>zastosować wodorozcieńczalną akrylową lub silikonowo-akrylową szpachlowkę, jeśli nie przewiduje się w tych miejscach przedłużonego kontaktu z wodą. Szpachlówki te są dość elastyczne aby wytrzymać niewielkie przesunięcia podłoża.</td>
</tr>
<tr>
<td>pękanie i łuszczenie się powłoki</td>
<td>użycie niewłaściwego typu szpachlówkp np. dyspersyjnej w miejscach w których występuje kontakt z wodą lub zachodzą znaczne przesunięcia uszczelniających elementów.</td>
<td>silikonowych mas uszczelniających nie należy malować.</td>
</tr>
<tr>
<td>pienienie / kraterowanie</td>
<td>tworzenie się pęcherzyków w mokrej warstwie farby (pienienie) podczas aplikacji a następnie po ich pękaniu tworzenie małych okrągłych wglębień w powłoce (kratery).</td>
<td>nadmierne rozcieńczenie farby lub naniesienie zbyt grubej warstwy. ناضعه مكورة وفربة أو وشمثة صاغة عبرة طبقة.</td>
</tr>
<tr>
<td>słaba rozlewość</td>
<td>wada farby polegająca na nie uzyskaniu gładkiej powłoki, bez widocznych śladów pędza lub walka po wyschnięciu farby.</td>
<td>wszystkie farby pienią się w pewnym stopniu w czasie aplikacji, jednakże dobrej jakości farby są tak opracowane, że pęcherzyki pękają kiedy farba jest jeszcze mokra co pozwala uzyskać dobrą rozlewość i wygląd.</td>
</tr>
</tbody>
</table>

wady powłok malarskich

- zastosować wodorozcieńczalną akrylową lub silikonowo-akrylową szpachlowkę, jeśli nie przewiduje się w tych miejscach przedłużonego kontaktu z wodą. Szpachlówki te są dość elastyczne aby wytrzymać niewielkie przesunięcia podłoża.
- zastosować wodorozcieńczalną akrylową lub silikonowo-akrylową szpachlowkę, jeśli nie przewiduje się w tych miejscach przedłużonego kontaktu z wodą. Szpachlówki te są dość elastyczne aby wytrzymać niewielkie przesunięcia podłoża.
- usunąć luźną i łuszczącą się farbę przez zeskrobanie lub szlifowanie papierem ściernym. Pomalować bez rozcieńczania zachowując odpowiednią grubość powłoki z zalecaną przez producenta wydajnością.
- pamięć o zagrananiu podłoża przed nałożeniem warstwy nawierzchniowej.
- nadmierne "walkowanie" lub "pędzlowanie" farby w czasie rozprowadzania po powierzchni. należy unikać nadmiernego "walkowania" i "pędzlowania" farby, lub też nie używać wyrobów po terminie ważności.
- nanoszenie farby zbyt szybko - szczególnie walkiem. przed renowacją powłok z w/w wadami powierzchnię należy przeszlifować.
<table>
<thead>
<tr>
<th>opis wady</th>
<th>możliwe przyczyny wystąpienia wady</th>
<th>sposoby zapobiegania i usuwania wad</th>
</tr>
</thead>
<tbody>
<tr>
<td>wygląd "zagęszczenia koloru lub zwiększonego polysku" w miejscach nakładania się warstwy mokrej na wyschniętą warstwę farby wcześniej nałożonej.</td>
<td>błąd aplikacyjny "nie utrzymanie mokrych krawędzi".</td>
<td>pozostawienie "mokrej krawędzi" w czasie malowania przez nanoszenie farby pędzlem lub walkiem w kierunku od powierzchni mokrej do suchej a nie odwrotnie. Malowanie wykonywać na powierzchni o wielkości możliwej do "kontrolowania", a przerwy w pracy zaplanować na naturalnych krawędziach (np. okna, drzwi, uskoki ścian itp.).</td>
</tr>
<tr>
<td>użycie "osczędnjej" farby o niskiej zawartości części stałych.</td>
<td>użycie farb z marki DEKORAL pomaga uniknąć problemu "pokrywania" ponieważ większa zawartość części stałych (pigmentów, spoiw) czyni powierzchnię styku mniej zauważalną.</td>
<td></td>
</tr>
<tr>
<td>podłoża o dużej chłonności lub porowate.</td>
<td>wymagają zaggruntowania aby zapobiec zbyt szybkiemu wysychaniu farby i skróceniu czasu mokrych krawędzi.</td>
<td></td>
</tr>
<tr>
<td>czarne, szare lub brązowe plamy albo obszary na powierzchni farby.</td>
<td>pleśń najczęściej powstaje na powierzchniach ulegających zawilgoceńiu, lub gdy dostęp promieni słonecznych jest do nich organiczny albo gdy występuje słaba wentylacja (łazienki, kuchnie, pralnie).</td>
<td>usunąć pleśń środkami chemicznymi. Następnie zastosować farby przeznaczone do długotrwałego zabezpieczenia przed pleśnią.</td>
</tr>
<tr>
<td>zamalowanie podłoża lub starej powłoki, z których nie usunęto występującej pleśni.</td>
<td>należy przeprowadzić próbę sprawdzającą na obecność pleśni przez naniesienie kilku kropel domowego wybielacza na powierzchnię. Jeśli nastąpi wybielenie powierzchni - oznacza to że przebarwienia spowodowane są przez pleśń.</td>
<td></td>
</tr>
<tr>
<td>głębokie, nierregularne peknienia (rozstępy) powłoki wyglądem przypominające spękanie wyschniętego biota.</td>
<td>nakładanie farby zbyt grubą warstwą np. na porowatą powierzchnię lub dla zniwelowania słabej zdolności krycia.</td>
<td>usunąć wadliwą powłokę przez zeskrobanie i wyszlifowanie. Stosować farby o większej zawartości części stałych, które zmniejszają tendencję do blotnych spęków. Mają one też bardzo dobre właściwości aplikacyjne oraz zdolność krycia, które to cechy minimalizują tendencję do nakładania zbyt grubych warstw farby.</td>
</tr>
</tbody>
</table>

6. wady powłok malarskich
6.1. wady wewnętrzne

nakładanie się warstw

pleśń

„blotne” spękania
<table>
<thead>
<tr>
<th>opis wady</th>
<th>możliwe przyczyny wystąpienia wady</th>
<th>sposoby zapobiegania i usuwania wad</th>
</tr>
</thead>
<tbody>
<tr>
<td>efekt „obramowania obrazu”</td>
<td>efekt niejednorodności koloru, który może wystąpić gdy ściana malowana jest za pomocą walka małarskiego ale w rogach (kątach) jest malowana przy użyciu pędzlą.</td>
<td>zjawisko to wynika zazwyczaj ze słabego krycia farby. Malowanie pędzem powoduje zazwyczaj nakładanie grubszych warstw niż przy użyciu walka. W tych miejscach widoczne są różnice w kryciu powierzchni (np. malowanie pędzem narożników).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>malowania dokonywać na odpowiednio mniejnych fragmentach powierzchni w celu utrzymania mocnych krawędzi, do narożników stosować odpowiednie walki. Stosować farby o dobrym kryciu.</td>
</tr>
<tr>
<td></td>
<td>dodanie kolorantu do farby nie dającej się kolorować, użycie kolorantu nieodpowiedniego typu lub nieznanego pochodzenia. Farba (odpowiednia baza) i koloranty różnych producentów.</td>
<td>przy farbach kolorowanych należy upewnić się czy użyta została właściwa kombinacja farba (odpowiednia baza) + koloranty. Gotowych wyrobów nie należy kolorować. Farba przed malowaniem musi być dokładnie wymieszana.</td>
</tr>
<tr>
<td></td>
<td>użycie farby o znacznie jaśniejszym kolorze niż podłoże. Nie użycie podkładu przy farbach o tzw. niestandardowym kryciu.</td>
<td>użyć farby podkładowej lub przy kolorach wybieranych z mieszanki o niestandardowym kryciu należy stosować podkład.</td>
</tr>
<tr>
<td></td>
<td>zużycie mniejszej ilości farby na jednostkę powierzchni niż zalecana przez producenta.</td>
<td>farbę nanosić na powierzchnię z zalecaną przez producenta wydajnością.</td>
</tr>
<tr>
<td>słabe krycie</td>
<td>tendencja powłoki lakierowej do przyjmowania śladow odcieńnych przedmiotów np. na pomalowanej półce, parapecie okiennym itp..</td>
<td>całkowicie usiciowane (wyschnięte) farby alkidowe mają dobrą odporność na odkształcenia powłoki pod naciskiem. Niska temperatury lub duża wilgotność powodują wydzielenie czasu sieciowania (schłodzenia) powłoki.</td>
</tr>
<tr>
<td></td>
<td>oddanie pomalowanej powierzchni do użytku przed całkowitym wyschnięciem powłoki.</td>
<td>całkowicie usiciowane (wyschnięte) farby alkidowe mają dobrą odporność na odkształcenia powłoki pod naciskiem. Niska temperatury lub duża wilgotność powodują wydzielenie czasu sieciowania (schłodzenia) powłoki.</td>
</tr>
<tr>
<td></td>
<td>całkowicie usiciowane (wyschnięte) farby alkidowe mają dobrą odporność na odkształcenia powłoki pod naciskiem. Niska temperatury lub duża wilgotność powodują wydzielenie czasu sieciowania (schłodzenia) powłoki.</td>
<td>farbę nanosić na powierzchnię z zalecaną przez producenta wydajnością.</td>
</tr>
<tr>
<td>odkształcenia powłok pod naciskiem</td>
<td>pomarszczenie pomalowanej powierzchni, pojawiające się kiedy niewyschnięta jeszcze farba formuje "skórkę".</td>
<td>jeśli farba wysycha - należy zeszlifować nierówności, usunąć zanieczyszczenia i nałożyć nową warstwę farby z zalecaną przez producenta wydajnością. Lepiej jest nanieść dwie warstwy farby w zalecanej grubości niż jedną grubą warstwę, która może powodować "FIRANKOWANIE".</td>
</tr>
<tr>
<td></td>
<td>naniesienie zbyt grubej warstwy farby (szczególnie przy stosowaniu farb alkidowych lub olejnych). Malowanie zanieczyszczonych powierzchni (np. smarami, woskami itp.).</td>
<td>jeśli farba wysycha - należy zeszlifować nierówności, usunąć zanieczyszczenia i nałożyć nową warstwę farby z zalecaną przez producenta wydajnością. Lepiej jest nanieść dwie warstwy farby w zalecanej grubości niż jedną grubą warstwę, która może powodować "FIRANKOWANIE".</td>
</tr>
<tr>
<td></td>
<td>malowanie przy wysokiej temperaturze lub przy niskiej temperaturze i dużej wilgotności, które to warunki powodują szybkie wysychanie filmu na powierzchni niż w głębi.</td>
<td>przemalować powierzchnię unikając ekstremalnych temperatur i wysokiej wilgotności.</td>
</tr>
<tr>
<td>marszczenie powłok</td>
<td>jeśli stosowany jest podkład, należy pozostawić na całkowite jego wyschnięcie zanim zostanie naniesiona warstwa nawierzchniowa.</td>
<td>jeśli stosowany jest podkład, należy pozostawić na całkowite jego wyschnięcie zanim zostanie naniesiona warstwa nawierzchniowa.</td>
</tr>
<tr>
<td>opis wady</td>
<td>możliwe przyczyny wystąpienia wady</td>
<td>sposoby zapobiegania i usuwania wad</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ścieranie się lub usuwanie powłoki podczas szorowania szczotką, gąbką lub tkainą.</td>
<td>używanie farby nie odpornoj na mycie bądź szorowanie. Zbyt krótki czas sezonowania powłoki przed rozpoczęciem mycia lub usuwania zabrudzeń.</td>
<td>używać farb odpornych na mycie bądź szorowanie. Usuwać zabrudzenia po kilkudniowym utwardzaniu się powłoki głęboko. Używać miękkiej ścieżeczki lub gąbk i łagodnych detergentów.</td>
</tr>
<tr>
<td>polskliwe lub matowe plamy (znane też jako "iskrzenie") na wymalowanej powierzchni - niejednolity polski.</td>
<td>nakładanie nowej warstwy farby na częściowo wyschniętą. Poprawianie pędzlem lub walkiem częściowo wyschniętej warstwy farby (LAPPING).</td>
<td>pozostawienie "mokrej krawędzi" w czasie malowania przez nanoszenie farby pędzłem lub walkiem w kierunku od powierzchni mokrej do suchej a nie odwrotnie. Malowanie wykonywać na powierzchni o wielkości możliwej do "kontrolowania", a przerwy w pracy zaplanować na naturalnych krawędziach (np. okna, drzwi, uskoki ścian itp.).</td>
</tr>
<tr>
<td>nierównomierne nałożenie gruntu lub farby na powierzchnię malowaną - różnice w chłonności podłoża.</td>
<td>podłoże powinno być dobrze zagrantowane farbą podkładową, aby uzyskać jednolitą chłonność. Jakość gruntowania ściany można sprawdzić nanosząc na podłoże kilka kropel wody - jeżeli kropel utrzymują się na powierzchni lub spływają to podłoże jest prawdopodobnie zagrantowane.</td>
<td></td>
</tr>
<tr>
<td>wada farby polegająca na łatwym i trwałym przyjmowaniu brudu i barwnych plam.</td>
<td>nanesienie farby nawierzchniowej na nie gruntowane podłoże.</td>
<td>poprzez zagrantowanie nowego podłoża można uzyskać odpowiednią grubość warstw nawierzchniowych, co zapewnia dobrą usuwalność plam.</td>
</tr>
<tr>
<td>eksploatacja powłok w podwyższonych temperaturach (np. nagrzewanie od pieca, kaloryferów lub przewodów grzewczych).</td>
<td>wysokiej jakości dyspersyjne farby akrylowe nie mają tendencji do żółknienia. Nie żółkną też lakier i email akrylowe.</td>
<td></td>
</tr>
<tr>
<td>opis wady</td>
<td>możliwe przyczyny wystąpienia wady</td>
<td>sposoby zapobiegania i usuwania wad</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>niezamierzony wzór teksturowy pozostawiony na powłoce przez wałek malarski.</td>
<td>użycie walka z niewłaściwym pokryciem lub złej jakości.</td>
<td>należy używać walka o właściwym pokryciu, unikać należy zbyt długiego włościa w pokryciu. Walki o odpowiednim pokryciu zapewniają odpowiednią grubość i jednolitość powłoki. Stosować odpowiednie walki do danego typu farb.</td>
</tr>
<tr>
<td>zastosowanie niewłaściwej techniki malowania.</td>
<td>malowanie walkiem należy rozpocząć od rogu pod sufitem i pokrywać w kierunku dołowi, sekcjami co około 1 m² powierzchni. Farbę należy rozprowadzać zakośami według wzoru "M" lub "W", zaczynając od ruchu ku górze dla zminimalizowania rozprysków. Następnie bez odrywania walka od powierzchni, wypełniać w podobny sposób równomiernie powierzchnię w kierunkach wymalowań.</td>
<td></td>
</tr>
<tr>
<td>tendencja walka malarskiego do odrzucania małych kroplek farby podczas aplikacji.</td>
<td>użycie farb o niskiej lepkości - nie tiksotropowych lub nadmiernie rozcieńczonych.</td>
<td>farby tiksotropowe dzięki dużej lepkości mają bardzo niską skłonność do rozpryskiwania się poczas aplikacji. Maksymalne rozcieńczenie farb emulsyjnych wynosi do 5%.</td>
</tr>
<tr>
<td>ściekanie farby wkrótce po naniesieniu, powodujące w efekcie nierówną powłokę.</td>
<td>nałożenie zbyt grubej warstwy farby lub nadmiernie rozcieńczonej (dotyczy również natrysku pneumatycznego).</td>
<td>jeśli farba jest jeszcze mokra - niezwłocznie rozprowadzić ją po powierzchni przy użyciu pedzla lub walka. Jeśli farba wyschła - należy zeszlifować nierówności i nałożyć nową warstwę farby z zalecaną przez producenta wydajnością. Lepiej jest nanosić dwie warstwy farby w zalecanej grubości niż jedną grubą warstwę, która może spowodować "FIRANKOWANIE".</td>
</tr>
<tr>
<td>aplikacja przy dużej wilgotności powietrza i/lub przy niskich temperaturach.</td>
<td>unikać nie sprzyjających warunków atmosferycznych (niskie temperatury, duża wilgotność).</td>
<td></td>
</tr>
<tr>
<td>natrysk hydrodynamiczny przy zbyt małej odległości od malowanej powierzchni.</td>
<td>zwiększyć odległość pistoletu od malowanej powierzchni.</td>
<td></td>
</tr>
<tr>
<td>opis wady</td>
<td>możliwe przyczyny wystąpienia wady</td>
<td>sposoby zapobiegania i usuwania wad</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>wzorzyste spękanie powłoki farby w sposób przypominający regularne łuski aligatora.</td>
<td>zastosowanie ekstremalnie twardzej i sztywnej powłoki np. emali alkidowej na powłokę bardziej elastyczną.</td>
<td>starej powłoki należy całkowicie usunąć przez zdrapanie i wyszilowanie powierzchni. Na dużych powierzchniach, dla przyspieszenia robót można zastosować opalanie powłok ale należy uważać aby nie nastąpiło zapalenie się farby lub podłoża np. drewna.</td>
</tr>
<tr>
<td>nałożenie warstwy nawierzchniowej na podkład niewystarczająco utwardzony.</td>
<td>Jeśli stosowany jest podkład, należy pozwolić na całkowite jego wyschnięcie zanim zostanie naniesiona warstwa nawierzchniowa.</td>
<td></td>
</tr>
<tr>
<td>ciągłe rozszerzanie się i kurczenie powłoki lakierowej prowadzi do utraty elastyczności i w efekcie do jej spękania.</td>
<td>Należy stosować wyroby zgodnie z ich przeznaczeniem, dobierając je z uwzględnieniem warunków w jakich będą zastosowane.</td>
<td></td>
</tr>
<tr>
<td>pęcherze utworzone na skutek miejscowej utraty adhezji (przyczynności) i odstawania powłoki od spodniej warstwy lub pod podłoża.</td>
<td>malowanie nagrzanej powierzchni przy bezpośrednim nasłonecznieniu. Nanoszenie farb alkidowych na wilgotne lub mokre powierzchnie.</td>
<td>usunąć farbę przez zeskrobanie lub szilowanie papierem ściernym. Przecąmałować powierzchnię unikając ekstremalnych temperatur i wysokiej wilgotności.</td>
</tr>
</tbody>
</table>

6. wady powłok malarskich
6.2. wady zewnętrzne

spękanie powłoki

pęcherzenie

kredowanie (wykwity)
<table>
<thead>
<tr>
<th>opis wady</th>
<th>możliwe przyczyny wystąpienia wady</th>
<th>sposoby zapobiegania i usuwania wad</th>
</tr>
</thead>
<tbody>
<tr>
<td>pękanie i łuszczenie się powłoki</td>
<td>pęknięcia suchej powłoki przez co najmniej jedną warstwę w głąb, spowodowane starzeniem i prowadzące do całkowitego zniszczenia powłoki. W początkowym stadium problem objawia się w postaci włoskowatych spęków a w późniejszych etapach występuje łuszczenie powłoki.</td>
<td>nadmierne rozcieńczenie farby lub naniesienie zbyt grubej warstwy.</td>
</tr>
<tr>
<td>„chwytnie brudu“</td>
<td>gromadzenie się brudu, cząstek pyłu i innych zanieczyszczeń na powierzchni wymalowanej. Wyglądą może być podobne do pieśni na powłoce.</td>
<td>zanieczyszczenia powietrza, spaliny samochodowe i lotny pył, gromadzące się na ścianach domu.</td>
</tr>
<tr>
<td>wykwity krystaliczne</td>
<td>“skorupiaste” białe wykwity solne wylukiwane z zaprawy lub z muru przez przenikającą wodę.</td>
<td>błąd polegający na niedopowiednim przygotowaniu podłoża i nie usunięciu wszystkich wcześniejszych wykwitów.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opis wady</td>
<td>możliwe przyczyny wystąpienia wady</td>
<td>sposoby zapobiegania i usuwania wad</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>mała trwałość kolorów; przedwczesne, nadmierne rozjaśnienie koloru farby, występujące często na powierzchniach wyeksponowanych na słońce od strony południowej.</td>
<td>użycie koloru farby, który jest szczególnie podatny na niszczące działanie promieni UV (opartych na pigmentach organicznych), najbardziej podatne są niektóre czerwienie, błękity i żółcienie.</td>
<td>podczas przemalowywania należy upewnić się czy kolor farby jest zalecany do stosowania na zewnętrz (kolorowany pigmentami nieorganicznych). Unikać czerwieni, błękitów i żółci.</td>
</tr>
<tr>
<td></td>
<td>użycie do kolorowania białej farby nie dostosowanej do systemu kolorowania, lub przepigmentowania bazy średniej albo transparentnej.</td>
<td>przy farbach kolorowanych należy upewnić się czy użyta została właściwa kombinacja farba (odpowiedniej baza) + kolorant. Gotowych wyrobów nie należy kolorować. Farba przed malowaniem musi być dokładnie wymieszana. Przy wybieranych z mieszalnika kolorach o niestandardowym kryciu należy stosować podkład.</td>
</tr>
<tr>
<td>zachodzenie na siebie krawędzi nanoszonych warstw, dające "wygląd zagęszczenia" koloru lub większego połysku w miejscu nakładania się warstwy mokrej na suchą w czasie aplikacji.</td>
<td>błąd wynikający z nie utrzymania "mokrych krawędzi" w czasie malowania.</td>
<td>utrzymywać "mokre krawędzie" przez nakładanie farby w kierunku od mokrego do suchego i powrót do powierzchni świeżo pomalowanej. Małowanie wykonywać na powierzchni o wielkości możliwej do "kontrolowania", a przerwy planować na naturalnych krawędziach, takich jak: okna, drzwi, występy murów itp.</td>
</tr>
</tbody>
</table>
6. wady powłok malarskich
6.2. wady zewnętrzne

<table>
<thead>
<tr>
<th>opis wady</th>
<th>możliwe przyczyny wystąpienia wady</th>
<th>sposoby zapobiegania i usuwania wad</th>
</tr>
</thead>
<tbody>
<tr>
<td>pleśń</td>
<td>pleśń najczęściej powstaje na powierzchniach ulegających zawiłgoceni, lub gdy dostęp promieni słonecznych jest do nich organiczony (np. ściany od strony północnej, pod okapami itp.)</td>
<td>usunąć pleśń środkami chemicznymi. Następnie zastosować farby, które mają zdolność do samooczyszczania. Pojawiającą się pleśń można w łatwy sposób usunąć poprzez zmycie wodą z detergentem.</td>
</tr>
<tr>
<td>rdzawe plamy na powłoce</td>
<td>zamalowanie podłoża lub starej powłoki, z których nie usunięto występującej pleśni.</td>
<td>należy przeprowadzić próbę sprawdzającą na obecność pleśni przez naniesienie kilku kropli domowego wypieluszczacza na powierzchnię. Jeśli nastąpi wybielenie powierzchni - oznacza to że przebarwienia spowodowane są przez pleśnie.</td>
</tr>
<tr>
<td>niekompatybilność farb</td>
<td>czerwono-brązowe plamy na powloce farby, pochodzące od korozji np. główek gwoździ.</td>
<td>podczas malowania nowych konstrukcji na zewnątrz, gdy używano gwoździ nieocynkowanych, zalecane jest na wstępie zagłębienie główek gwoździ, a następnie ich zaszpachlowanie. Każda główka gwoźdia powinna być punktowo zagłębiona farbą antykorozyjną.</td>
</tr>
<tr>
<td></td>
<td>nieocynkowane gwoździe nie zostały zagłębione i zaszpachlowane. Ulegają one korozji powodując rdzawe przebarwienia.</td>
<td>ocynkowane główki gwoździ, które zaczęły korodować po szlifowaniu np. papierem ściernym lub pod wpływem długotrwałego oddziaływania czynników atmosferycznych.</td>
</tr>
<tr>
<td></td>
<td>utrata adhezji przy nakładaniu nawierzchniowej farby dyspersyjnej na stare, wielowarstwowe powłoki farb ftalowych lub olejnych.</td>
<td>nanoszenie farb dyspersyjnych na więcej niż 3-4 warstwy starej farby alkidowej, ftalowej lub olejnej, może powodować oderwanie się starej powłoki od podłoża.</td>
</tr>
<tr>
<td>opis wady</td>
<td>możliwe przyczyny wystąpienia wady</td>
<td>sposoby zapobiegania i usuwania wad</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>odstawanie powłoki od podłoża z powodu słabej adhezji (przyczynności). Kiedy powłokę stanowi podkład i warstwa nawierzchniowa albo kilka warstw farby, łuszczenie może obejmować niektóre lub wszystkie warstwy.</td>
<td>przesączenie się wilgoci przez niesuszczelinnie złącza, spoiny, przecieki w dachu lub w ścianie, nadmiernie przenikanie wilgoci przez ściany zewnętrzne (w większym stopniu wada występuje przy powłokach olejnych).</td>
<td>ustalić przyczynę zawiłocenia i należy zlikwidować jej źródło przez: naprawę dachu, wyczyśczenie rynien i rur spustowych oraz uszczelniając wszelkie peknienia w murze za pomocą wysokojakościowych wodorozcińcowych uszczelniaczy na bazie żywic akrylowych.</td>
</tr>
<tr>
<td>odbarwienie oraz ogólne pogorszenie jakości powłoki na świeżym tynku.</td>
<td>farby olejne lub dyspersyjne zostały naniesione na świerzy tynk, który niedojrzał przez minimum 4 tygodnie. Świerzy tynk zawiera wapno, które jest środkiem silnie alkalicznym. Dopóki wapno nieprzereaguje w całości z CO₂ z powietrza, alkaliczność tynku jest bardzo wysoka i może naruszyć spoistość powłoki.</td>
<td>należy pozwolić aby tynk utwardził się co najmniej 4 tygodnie (idealnie by było przez cały rok) przed przystąpieniem do malowania. Jeśli nie ma takiej możliwości, to malarz powinien zastosować farbę odporną na alkalii (np. farby akrylowe mają ją bardzo dobrą). Przed malowaniem należy podłoże zagruntować i pomalować farbą akrylową.</td>
</tr>
<tr>
<td>pogorszenie jakości powłoki, powodujące nadmierną lub szybką utratę połysku warstwy nawierzchniowej.</td>
<td>zastosowanie farb olejnych lub alkidowych o wysokim połysku na powierzchnie wystawione na bezpośrednie działanie promieni słonecznych.</td>
<td>bezpośrednie działanie promieniowania słonecznego może powodować degradację spoistą i pigmentów, prowadząc do kredowania i utraty połysku powłoki. Przygotowanie powierzchni, która utraciła połysk do ponownego malowania: najpierw należy usunąć w możliwie najbliższym stopniu warstwkę kredy przy użyciu szczotek ze sztywnej szczeciyny, a następnie starannie splukać powierzchnię wodą. Podłoże gruntować odpowiednimi gruntami i malować farbami (grunt + farba jednego producenta).</td>
</tr>
<tr>
<td>opis wady</td>
<td>możliwe przyczyny wystąpienia wady</td>
<td>sposoby zapobiegania i usuwania wad</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>wymywanie środków powierzchniowo-czynnych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>koncentracja wodorozpuszczalnych składników na powloce farby dyspersyjnej, z utworzeniem żółtobrązowych zacieków, czasami o połyskliwym wyglądzie.</td>
<td>malowanie przy chłodnej i wilgotnej pogodzie lub bezpośrednio przed wystąpieniem takich warunków. Dłuższy czas schnięcia pozwala rozpuszczalnym w wodzie składnikom migrować na powierzchnię zanim farba ulegnie dokładnemu wyschnięciu. Mgła, rosa lub inną wilgoć kondensującą się na powłoce krótko po jej wyschnięciu.</td>
<td>unikać malowania późnym popołudniem jeżeli oczekiwane jest ochłodzenie i pogorszenie pogody wieczorem lub w nocy. Jeśli problem ten wystąpi już pierwszego dnia lub wkrótce po zakończeniu malowania, wypływająca wodorozpuszczalna substancja czasem daje się łatwo spluwać wodą. Po usunięciu tej substancji całość przemalować unikając niekorzystnych warunków.</td>
</tr>
<tr>
<td>przebarwienia „taninowe”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>brązowawe lub taninowe (czerwone) przebarwienia na powierzchni farby w wyniku migracji garbników z podłoża przez powłokę farby. Zawisko to jest typowe dla drewna z dużą ilością garbników, takich jak: sekwia, sosna, cedr, mahoń lub na pomalowanych sękach w niektórych gatunkach drewna.</td>
<td>błąd w zagrunтовaniu i uszczelnieniu powierzchni przed naniesieniem farby. Zastosowanie podkładu, który nie jest dostatecznie odporny na przenikanie garbników z podłoża.</td>
<td>starannie oczyścić powierzchnię i nanieść odporny na przenikanie garbników podkład olejny. W krańcowych przypadkach można nanieść drugą warstwę podkładu po dokładnym wyschnięciu pierwszej warstwy.</td>
</tr>
<tr>
<td>marszczenie (podnoszenie powłoki)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>utworzenie chropowatej, pofalowanej powierzchni farby po utworzeniu "skórki" na powłoce.</td>
<td>naniesienie zbyt grubej warstwy farby (szczególnie przy stosowaniu farb alkidowych lub olejnych). Malowanie zanieczyszczonych powierzchni (np. smarami, woskami itp.).</td>
<td>zeskrobać lub zeszilować pomarszczoną powłokę z powierzchni. Należy unikać zawiłogocenia i zanieczyszczenia powierzchni podczas malowania farbami tłustowymi lub alkidowymi.</td>
</tr>
<tr>
<td></td>
<td>malowanie przy wysokiej temperaturze lub przy niskiej temperaturze i dużej wilgotności, które to warunki powodują szybsze wysychanie filmu na powierzchni niż w glebi.</td>
<td>przemalować powierzchnię unikając ekstremalnych temperatur i wysokiej wilgotności.</td>
</tr>
<tr>
<td></td>
<td>naniesienie nawierzchniowej warstwy farby na niedostatecznie utwardzony podkład.</td>
<td>jeśli stosowany jest podkład, należy pozwolić na całkowite jego wyschnięcie zanim zostanie naniesiona warstwa nawierzchniowa.</td>
</tr>
</tbody>
</table>
badania właściwości wyrobów lakierowych
Przeprowadzenie wstępnej oceny umożliwia ogólną ocenę przydatności wyrobu lakierowego. W razie ujawnienia wyniku któregokolwiek z tych badań można uznać wyrób za niezgodny z wymaganiami i unikać konieczności wykonania innych bardziej pracochłonnzych badań. Do prób tych zalicza się:

badanie na kożuszenie
Bezpośrednio po otwarciu opakowania z badanym wyroblem lakierowym należy dotykać szklaną bagietką powierzchni wyrobu. Wyrób odpowiada wymaganiom, tj. nie posiada kożucho, gdy na dnie opakowania nie pozostanie twarde, zbity osad.

Badanie na kożuszka w okresie poznieszym nie jest powodem do dyskwalifikacji wyrobu.

badanie na obecność osadu
Wyrób lakierowy należy mieszkać w opakowaniach 10-litrowych i większych przy użyciu lopatki przez 30 min., a w opakowaniach mniejszych - przez 15 min. Wyrób odpowiada wymaganiom, gdy na dnie opakowania nie pozostanie twardy, zbyt osad.

badanie na jednolitość koloru
Po starannym wymieszaniu zawartości puszki badanego wyrobu w podany wyżej sposób wyjmuje się lopatkę i obserwuje spływający z niej wyrób. Jeżeli występuje niejednolitość koloru spowodowana rozbiorowaniem się pigmentów i na lopatce tworzą się barwne smugi, to wyrób należy uznać za nie odpowiadający wymaganiom.

Badanie na zagłębienie i obecność zanieczyszczeń mechanicznych
Okolo 50 g badanego wyrobu pobranego z opakowania przemysłowego się na sicie o wymiarach bocketka kwadratowego 0,063 mm rozpuszczalnikiem właściwym dla danego wyrobu. Pozostałość na sicie będa wzrokom na obecność zagłębień i zanieczyszczeń mechanicznych. W wypadku ich stwierdzenia wyrób należy uznać za nie odpowiadający wymaganiom.

zasada pomiaru
pomiar polega na zmierzeniu czasu wypływu 100 ±1 ml nalanego materiału małarskiego przez kalibrowany otwór wypływowy kubka o wymiarach boku kwadratowego 0,063 mm rozpuszczalnikiem właściwym dla danego wyrobu. Wyrób przyjmuje się za niezgodny z wymaganiami i uniknę to zawartości jakiekolwiek z tych badań.

wykonanie pomiaru

kubek należy dokładnie oczyścić odpowiednim rozpuszczalnikiem, wymyć oddzielnie dno i otwór wypływowy, chroniąc go przed uszkodzeniem.

polega na pomiarze masy wyrobu lakierowego z nanej objętości.

Zawartość rozpuszczalników i rozcieńczalników oznacza się metodą suszenia pod zmniejszonym ciśnieniem. Na szalce Petriego o średnicy ok. 75 mm umieszcza się ok. 3 g badanego wyrobu zważonego z dokładnością do 0,01 g, rozlewa, rozciskając w podanym w temp. 75 ±5 °C, po czym zmniejsza się ciśnienie do ok. 20 mm Hg i ogrzewa nadal w temp. 75 ±5 °C przez 2 godz. Po wyjęciu szafka z suszarki i ostudzeniu w ekwikatorze waż się z dokładnością do 0,01 g. W dalszym ciągu badania oznacza się zawartość wody metodą destylacyjną. Zawartość rozpuszczalników i rozcieńczalników (w %) oblicza się ze wzoru:

\[R = \frac{(m_1 - m_2)100}{m_1} \]

m_1 - masa badanego wyrobu przed suszeniem, [g]
m_2 - masa badanego wyrobu po wysuszeniu, [g]
W - zawartość wody, [%]
7.1.5. oznaczenie zawartości pigmentów i obciążników

Probówek o pojemności ok. 100 cm³ suszy się do stałej masy i waży z dokładnością 0,01 g. Następnie z tą samą dokładnością odważa się w niej ok. 6 g badanego wyrobu lakierowego. Do próbówki z odważonym wyrobem wlewa się 30 cm³ ropuszczalnika, mieszając pręcikiem szklanym, po czym pręcik splukuje się 10 cm³ rozpuszczalnika.

W zależności od rodzaju badanego wyrobu stosuje się następujące rozpuszczalniki: 1) wyroby olejne,flateowe i poliwinylowe - 5 cz. obj. benzenu, 3 cz. obj. metanolu, 2 cz. obj. acetonu; 2) wyroby nitrocelulozowe - 1 cz. obj. acetonu, 1 cz. obj. toluenu; 3) wyroby chlorokaukzucozowe - 1 cz. obj. benzenu, 1 cz. obj. tetraclioek węgla; 4) wyroby olejne i flateowe pigmentowane sadzami - eter naftowy.

Próbkę z zawartością odwirowuje się na w ธรvice laboratoryjnej z prędkością 3000-4500 obr./min. (w wypadku wyrobów pigmentowanych sadzą - powyżej 10000 obr./min.), aż do otrzymania klarowej cieczy nad osadem, którą następnie dekantuje się ostrożnie do kolby. Czyność tę wykonuje się jeszcze 3-krotnie, używając każdorazowo czystego rozpuszczalnika. Osad pozostaje się w próbówce suszy się wraz z próbówką w temp. 100 ±2 °C przez 3 godz. i po ostudzeniu w eksyktorze waży z dokładnością do 0,01 g.

Zawartość pigmentów i obciążników (w %) oblicza się ze wzoru:

\[P = \left(\frac{m_1 - m_2}{m} \right) \times 100 - X \]

\[m_1 \text{ - masa próbówki z osadem, [g]} \]
\[m_2 \text{ - masa próbówki, [g]} \]
\[m \text{ - masa osadu, [g]} \]
\[X \text{ - poprawka wynikająca z niezupełnego rozdziału pigmentu.} \]

7.1.6. oznaczenie zawartości substancji błonotwórczych

Zawartość substancji błonotwórczych (w %) oblicza się na podstawie wyników oznaczeń zawartości rozpuszczalników i rozcieńczalników oraz zawartości pigmentów i obciążników ze wzoru:

\[B = 100 - (W + R + P) \]

\[W \text{ - zawartość wody,} \]
\[R \text{ - zawartość rozpuszczalników i rozcieńczalników,} \]
\[P \text{ - zawartość pigmentów i obciążników.} \]

7.1.7. oznaczenie stopnia rozłarcia pigmentów i wypełniaczy

zasada pomiaru

pomiary polega na przesunięciu nożem warstwy badanego materiału malarskiego w zagłębieniu płytki grindometru o malejącej od 100 do 0 µm głębokości i ustaleniu miejsca najbliższego działce 100, przy którym w warunkach badania powstają co najmniej 3 rysy spowodowane przesuwaniem się nieroztartych ziaren pigmentów czy napełniaczy.

wykonanie pomiaru

badany materiał umieścić na przedłużeniu głębszej części rowka. Przesunąć nóż jednostajnym ruchem po powierzchni płytki pomiarowej wywierając równocześnie nacisk wystarczający do działania nadmiaru materiału malarskiego. Po 10 s ocenić miejsce, przy którym powstają co najmniej 3 rysy spowodowane przesuwaniem się nieroztartych ziaren pigmentów. Wykonać należy trzy próbki z dokładnością 5 µm i podać średnią arytmetyczną.

rozlewność jest to właściwość samorzutnego rozpływania się ściezko nałożonej warstwy wyrobu lakierowego.

przygotowanie wyrobu do badań

badany wyrob lakierowy należy dokładnie wymieszac.

wykonanie pomiaru

pltkę szklaną ułożyć poziomo, przyrząd ustawić na niej wzdłuż dłuższej krawędzi, boczną płaszczyznę dostawić do prowadnicy. Wzdłuż wewnętrznej krawędzi przyrządu nanieść pręcikiem szklanym około 10 ml wyrobu lakierowego na pltkę, docisnąć przyrządę ręką do powierzchni płytki i do prowadnicy, przesunąć go szybkiem, jednostajnym ruchem do przeciwległej krawędzi płytki. Płytkę z naniesionym wyrobem pozostawić w pozycji poziomej. Po upływie około 5 min przeprowadzić ocenę rozlewności wyrobu lakierowego.

przyrząd i pltkę należy umyć starannie po każdorazowym użyciu.

rozlewność badanego wyrobu lakierowego ocenia się ilościowo w skali od 0 do 10 przez porównanie pasm nałożonego wyrobu lakierowego z pasmami skali rozlewności.

7.2. oznaczenie właściwości wypalalnych

7.2.1. oznaczenie rozlewności
późna na niesienie na płytkę szklaną pasm wyrobu lakierowego o różnej grubości i ustawieniu wymalowanej płytki w pozycji pionowej. Stopień ściekalności to liczba prześwitów między pasmami nie pokrytych na całej długości wyrobu lakierowym, spływającym z powierzchni pionowej, licząc od prześwitu najwyższego położonego, przy pasmie o grubości 75 µm.

Polega na przetoczeniu, po śniegu pomalowanej powierzchni, przyrządu w postaci krążka z naciętymi na obwodzie rowkami o zmiennej głębokości i określonym długości i głębokości, do jakiej rowki te zostają pokryte ciekłym wyrotem lakierowym. Poszczególne stopnie wyschnięcia oznacza się z uwzględnieniem występujących na powierzchni zmian, w zależności od wielkości działającego na nią obciążenia.

1. Posypane kulki szklanymi lub agałitowymi kulki można całkowicie usunąć pędzlem bez uszkodzenia powierzchni powłoki.
2. Obciążenie 20 g (0,19 N ok. 490 Pa) papier nie przykleja się do powierzchni powłoki.
3. Obciążenie 200 g (1,96 N, ok. 4,9 kPa) papier nie przykleja się do powierzchni powłoki.
4. Obciążenie 2 kg (19,6 N ok. 49 kPa) papier nie przykleja się do powierzchni powłoki w miejscu obciążenia występują dostrzegalne zmiany powierzchni powłoki.
5. Obciążenie 2 kg (19,6 N, 49 kPa) papier nie przykleja się do powierzchni powłoki w miejscu obciążenia nie występują dostrzegalne zmiany powierzchni powłoki.
6. Obciążenie 20 kg (196 N, 490 kPa) papier nie przykleja się do powierzchni powłoki w miejscu obciążenia występują dostrzegalne zmiany powierzchni powłoki.
7. Obciążenie 20 kg (196 N, 490 kPa) papier nie przykleja się do powierzchni powłoki w miejscu obciążenia nie występują dostrzegalne zmiany powierzchni powłoki.

Zasada pomiaru

Wymalowaną płytę 100 x 100 x 0,5 po wyschnięciu powłoki umieszcza się powłoką ku górze na kowadelku pod iglicą. Płytką powinna przylegać do powierzchni kowadelka, część płytki podlegająca uderzeniu powinna znajdować się w odległości nie mniejszej niż 20 mm od krawędzi płytki lub środka wglądu pochodzącego z poprzedniego pomiaru. Po wyjęciu płytki miejsce uderzenia obserwuje się przez szkło powiększające. Jeśli nie stwierdza się pęknięcia lub odprysków powłoki od płytki, wówczas należy opuścić ciężarek z większej wysokości.

Przyrząd

Korpus aparatu utworzony jest z rury zamkniętej pokrywą, połączonej kolnierzem z belką złączoną z podstawą za pomocą śrub. W podstawie jest osadzone kowadelko, w belce - urządzenie iglicowe, w rurze - ciężarek z urządzeniem do zwalniania go. Rura kierująca jest zaopatrzona w skale długości 50 ± 1 cm z działką co 1 cm. Ciężarek można umacać na dowolnej wysokości za pomocą śrub przesuwalnych w pionowych rowkach rury. Masa ciężarka wynosi 1000 ± 10 g. Zakończenie igły stanowi osadzona w niej kulka stalowa o średnicy 8 mm. Czołowa powierzchnia kowadelka jest pozioma i zaokrąglona.

** Wyniki badania**

Odporność powłoki na uderzenie określa się najwyższą wysokością, przy której nie nastąpiło uszkodzenie powłoki lakierowej pod wpływem uderzenia. Przy podawaniu wyników należy uwzględnić grubość badanej płytki, grubość badanej powłoki, temperaturę i wilgotność względna otoczenia. Wykonuje się 12 pomiarów na trzech płytkach po cztery uderzenia na każdej. Za wynik ostateczny przyjmuje się średnią arytmetyczną wyników pomiaru, odrzucając najwyższy i najniższy wynik.

7.2.3. oznaczenie grubości
7.2.4. oznaczenie stopnia wyschnięcia
7.3. ocena właściwości powłok malarskich
7.3.1. pomiar odporności na uderzenie wg Du Ponta
7.3.2. oznaczanie odporności powłok na ścinanie przyrządem Gardnern

zasada pomiaru
oznaczenie polega na przetarciu w badanej powloce lakierowej eliptycznego otworu, którego większa średnica wynosi 3,6-3,7 mm, za pomocą strumieniu materiału ciernego przesypującego się przez rurę przyrządu pomiarowego.

wykonanie oznaczenia
przod przystąpieniem do pomiaru należy zuzyć grubość powłoki.
po sprawdzeniu ustawienia pionowego rury oraz odległości wylotu rury do najbliższego punktu skóry z badaną powłoką (25 ±1 mm) należy skontrolować czas przesypu 3,5 kg materiału ciernego, który powinien wynosić 21 - 23 s. Badania ścieśialności dokonuje się w temp. 20 ±2°C przy wilgotności względnej powietrza 65 ±5%.

badaną skórę z powłoką lakierową mocuje się do stolika przyrządu tak, aby przylegała na całej długości płaszczyzny, a w toku oznaczenia nie mogła zmienić swojego położenia. Następnie wypisaczy szybkim ruchem materiał cierne do leja zasypanego, porcjami po 3,5 kg, aż do ustawienia się podłoża, a dalej po 0,5 kg do momentu przetarcia w powloce otworu eliptycznego, którego większa średnica wynosi 3,6 - 3,7 mm.

ścieśialność X należy obliczyć w kg/µm, wg wzoru:

\[X = \frac{m \pm 0,02s}{s} \]

m - masa użytego do oznaczenia materiału ciernego, kg
s - średnia grubość badanej powłoki, µm

za wynik należy przyjąć średnią arytmetyczną co najmniej 3 oznaczeń, których wyniki nie różnią się więcej niż 10% od wartości średniej.

7.3.3. oznaczanie względnej twardości przy użyciu aparatu wahadłowego

zasada pomiaru
pomiar polega na pomiarze szybkości zanikania wahań wahadła fizycznego, które w punkcie podparcia ma mniej lub bardziej twardą powłoką. Twardością względną nazywa się stosunek czasu zanikania wahań wahadła, którego punkt podparcia umieszczony jest na powierzchni badanej powłoki, do czasu zaniku wahań wahadła, którego punkt podparcia umieszczony jest na wzorcowej płycie szklanej. Dla określenia twardości tą metodą przyjmuje się czas zaniku wahań, w ciągu którego nastąpiło zmniejszenie kąta wyhylenia wahadła, opartego na powłoce i na niezamalowanym szkle, w granicach od 6° do 3° (wahadło Königa) oraz od 12° do 4° (wahadło Persoza). Długość wahadła mierzona od punktu podparcia do końca wskazówek powinna wynosić 400 ±0,2 mm. Skala podzielona jest na stopnie, w środku skali jest punkt zerowy, od którego w obie strony odmierzane są działki.

wahadło Königa
skłające się z ramy połączonej poprzeczną belką, na której zamontowano dwie kulki o polerowanej powierzchni oraz pręt z przesuwnym ciężarkiem, służącym do regulacji okresu wahań wahadła. Kulki, o średnicy 5 ±0,005 mm, wykonane są ze stali nierdzewnej. Okres wahana mierzony na płycie szklanej powinien wynosić 1,4 ±0,02s, a stała szklana 250 ±10 s. Masa wahadła powinna wynosić 200 ±0,2 g.

wahadło Persoza
skłające się z ramy połączonej poprzeczną belką, na której zamocowane są dwie kulki o średnicy 8 ±0,005 mm, i polerowanej powierzchni. Okres wahana mierzony na płycie szklanej powinien wynosić 1 ±0,01 s, a stała szklana co najmniej 420 s. Masa wahadła powinna wynosić 500 ±0,1 g.

oznaczenie stałej szklanej

wykonanie oznaczenia
płytkę z badaną powłoką umieścić na płycie statywu. Oznaczenie wykonać jak dla stałej szklanej.

twardość względną powłoki obliczyć według wzoru:

\[X = \frac{a}{b} \]

a - czas zanikania wahań wahadła na badanej powłoce, [s]
b - stała szklana, [s]

za wynik końcowy oznaczenia należy przyjąć średnią arytmetyczną co najmniej trzech oznaczeń, których wyniki nie różnią się więcej niż od wyniku średniego niż o 5%.
elastyczność powłoki
odporność plastyczna powłoki (np. lakieru) na trwałe odkształcenia i pęknięcia w trakcie pracy podłoża (przy zginaniu, skrčaniu itp.)

zasada pomiaru
oznaczenie polega na określeniu elastyczności za pomocą sworzn o różnych promieniach krzywizny, osadzonych na trwałej podstawie, wokół których dokonuje się zgienia o kąt 180° blach pokrytych powłokami lakierowymi. Wymalowanie znajduje się na zewnętrznej stronie płytki w stosunku do krzywizny sworzni. Ealstyczność mierzona tą metodą zależy od grubości blachy i grubości warstwy wymalowania, od szybkości ruchu przy zginaniu oraz warunków klimatycznych pomiaru (temperatura, wilgotność).

przyrząd
sworznie o następujących promieniach krzywizny 1, 3, 5, 10, 15, 20 mm.

plytki do badań
stosuje się płytki o różnej grubości, najczęściej 0,2 lub 0,3 mm. Z płytek tych wycina się paski szerokości 20 mm.

wykonanie pomiaru
dokonuje się zgienia płytek szybkim ruchem wokół sworznia o kąt 180°. Jako wartość odpowiadającą elastyczności powłoki przyjmuje się minimalną średnię w milimetrach, odpowiadającą sworzniowi, przy którym nie występują ślady pęknięć powłoki po zgięciu płytki. Metoda nadaje się do pomiaru elastyczności w przypadkach powłok mało elastycznych, ponieważ powłoki elastyczne wytrzymują badanie również na najmniejszych promieniach krzywizn.

zasada pomiaru
oznaczenie polega na wykonaniu na badanej powłoce siatki nacięć za pomocą noża krążkowego i dokonaniu oceny przyczepności według skali przyczepności.

wykonanie pomiaru
sposób badania polega na nacięciu nożem na krzyż powłoki oraz przesunięciu po powłoce pędzla w obu kierunkach. Siatkę nacięć należy obserwować przez szkło powiększające i porównać ze skalą przyczepności. Za wynik należy przyjąć stopień przyczepności jednakowy dla co najmniej 4 siatek nacięć. Należy wykonana minimum 6 prób na 3 jednocześnie przygotowanych powłokach lakierowych.

zasada pomiaru
polega na odrywaniu badanej powłoki lub pokrycia lakierowego za pomocą przyrządu odrywowego, na powierzchni określonej przylepionym cylindrikiem i oznaczaniu przyczepności w Pa.

wykonanie pomiaru
powierzchnię powłok w miejscach, w których zostaną przyklejone cylinderyki, przetrzeć papierem ściernym o wielkości ziaren 150 w celu uzyskania szczerości.

odważony i dokładnie wymieszany klej nanieść cienką warstwą na całą powierzchnię cylindryka oraz powierzchnię powłoki w miejscu przyklejania cylindryka. Płytkę umieścić na wypoziomowanej płycie, nałożyć cylinderyki pomiarowe na powłoki, obciążyć je cylindrykami dociskowymi i pozostawić do czasu utwardzenia kleju.

na płytc z dobrym cylindrikiem ustawić przyrząd, w którego uchwycie zamocować cylindryki. Nóżki lub płasczyzna oporowa przyrządu powinna być ustawiona na powierzchni powłoki w płaszczyźnie równoległej do dołkowanej powierzchni cylindryka.

cylindryki poddawać działaniu wzrastającej siły odrywającej, obserwując jednocześnie wskaźnik wielkości siły.

sposób wywierania siły odrywającej powinien być zgodny z instrukcją obsługi przyrządu. Szybkość wzrostu siły powinna wynosić około 29,4 N/s. Odczytać wielkość siły, jaka spowodowała odwrócenie dołkowanej cylindryka.
zagadnienia środowiskowe i względy BEZPIECZENSTWA
Zagrożone są osoby bezpośrednio przygotowujące i nakładające farby, oraz osoby postronne znajdujące się w pobliżu. Mogą one wychodzić kurz, opary lub aerozole, a także narażać się na kontakt z farbą przez skórę bądź oczy. Zagrożenie dotyczy także osób kontaktujących się ze starymi pokryciami, np. w trakcie ścierania lub piaskowania bądź przy wykonywaniu prac na gorąco (spawanie, zgrzewanie itp.).

Pigmenty olowiono i chromianowo są stosowane w farbach dla zapewnienia barwy i ochrony przed korozją. Z powodu zagrożenia zdrowia wprowadzone ograniczenia ilości tych składników w wyrobach malarskich. W przypadku olowiu farba nie może zawierać więcej niż 0,06% wagowego stałych składników wyrobu malarskiego. Z powodu zagrożenia zdrowia nie stosuje się związków ręcznych do farb używanych na obszarach zasiedlonych. Ręcznie stosowana była w celu zwalczania porastania i płenień powłok malarskich. Obecnie nie stosuje się związków ręcznych do farb ich toksyczności, w zamian używa się związków miedzi lub rozmaite związków organicznych spełniających tę rolę.

Zagrożenia wynikające z kontaktu z chromem i jego związkami nieorganicznymi mogą się zmieniać w zależności od stopnia utlenienia chropu i rozpuszczalności w wodzie, tym niemniej podstawowe niebezpieczeństwo związane jest z obecnością związków chromu (VI). Do tej kategorii należą wszystkie chromiany, dne niany i polichromiany. Niektóre związków chromiany mogą być potencjalnie szkodliwe w farbach proszkowych. Zagrożenia związane z wodami, opary i aerozole, które mogą być potencjalnie szkodliwe w farbach gruntujących. Odnoszą się one do wychodzenia lakierów, oparów, aerozoli, lub kontaktu przez skórę bądź oczy. Rzeczywiste zagrożenia wynikające z kontaktu z farbą gruntową zawierającą związki Cr(VI) mogą być mniejsze.

Oddziaływania na układ oddechowy: Istnieje podwyższona ryzyko zachorowania na raka płuc wskutek wychodzenia oparów zawierających związki chromu (VI). Pigmenty chromianowe stosowane w farbach są obecnie klasyfikowane jako rakotwórcze. Inne skutki związane z wychodzeniem kurzu, oparów i aerozoli zawierających związki chromu (VI) mogą wywołać następujące efekty:

a) podrażnienie chemiczne oskrzeli,
b) róg astmy w rezultacie podrażnienia układu oddechowego,
c) owrzodzenie błony śluzowej nosa, które może doprowadzić do perforacji przegrodu nosowej.

Skóra: Oddziaływanie związków chromianowych na skórę obejmuje:

a) reakcje podrażnające, które mogą prowadzić do owrzodzeń. Taki efekt jest szczególnie prawdopodobny jeśli na skórze występują skaleczenia lub zadrapania,
b) działanie alergizujące. Skóra może czerwienić się i podrażniać nabierając wyglądu przypominającego egzemen.

Oczy: Bezpośredni kontakt i zanieczyszczenie oczu może wywołać podrażnienie i prawdopodobne owrzodzenie rogówki.

Dopuszczalne dawki
Dla związków chromu (VI) maksymalne dawka ekspozycji w środowisku pracy wynosi 0,1 mg/m³ 8-godzin (Dz. U. Nr 217, poz. 1833).

<table>
<thead>
<tr>
<th>Nazwa związku</th>
<th>Rodzaj zagrożeń</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromian cynku</td>
<td>Rak. Kat 1; R45 Xn; R22</td>
</tr>
<tr>
<td>Chromian stronitu</td>
<td>Rak. Kat 2; R45 Xn; R22</td>
</tr>
<tr>
<td>Chromian wapnia</td>
<td>Rak. Kat 2; R45 Xn; R22</td>
</tr>
<tr>
<td>Chromian olowiu</td>
<td>Rak. Kat 3; R40 Repr. Kat 1, Kat 3; R61; R62</td>
</tr>
<tr>
<td>Inne związki Cr(VI) z wyj. chromianu baru</td>
<td>Rak. Kat 2; R49</td>
</tr>
</tbody>
</table>

Znaczenie symboli: Rak - rakotwórczy; Kat - kategoria; Xn - szkodliwy; Repr - toksyczny w rozrodczości; R22 - szkodliwy po połknięciu; R33 - szkodliwy z powodu gromadzenia się w organizmie; R40 - potencjalnie ryzyko nieodwracalnych skutków; R43 - może powodować uczucie skóry; R45 - może wywoływać raka; R49 - może wywoływać raka wskutek wychodzenia; R61 - może być niebezpieczny dla nienarodzonych dzieci; R62 - może oddziaływać szkodliwie na płodność.
związki ołowiu

Ołów może wywoływać szereg niebezpiecznych powikłań rozwajowych i chorobowych u dzieci i dorosłych. U dzieci nawet niewielkie dawki ołowiu mogą powodować trwałe trudności w nauce, obniżenie koncentracji oraz inne powikłania w zachowaniu. Szkodliwe oddziaływanie na zdrowie może się pojawić zanima wystąpią symptomy zatrucia. Symptomy obejmują utratę apetytu, trudności w zasypianiu, podrażnienie, zmęczenie, bóle głowy, bóle mięśni i stawów, metaliczny posmak w ustach. Wysokie dawki ołowiu mogą silnie zaburzyć wytwarzanie krwi, wydalenie moczu, mogą uszkodzić układ nerwowy oraz rozrodczy. Zatrucie związani z ołowiu zwykle następuje w wyniku spożycia resztek farby lub przez wdychanie kurzu zawierającego drobiny farby. Źródłem mogą być odpadające kawalki farby lub drobiny powstające podczas mechanicznego usuwania starych pokryć, w szczególności w trakcie czyszczenia strumieniowo-ściernego (piaskowanie), opalania lub szlifowania. Kurz ołowiowy może dostać się do organizmu w wyniku wdychania kurzu, spożycia skazanej żywności, zabrudzenia skóry (głowcza rąk), palenia papierosów.

8.2. toksyczne rozpuszczalniki

Farby i powłoki często zawierają rozpuszczalniki, które są w pewnym stopniu toksyczne. Osoba może wydychać pewną dawkę oparów tych rozpuszczalników przez ograniczony czas bez narażania się na poważniejsze osłabienie zdrowia, jednak wdychanie długotrwałe bądź wychodzenie nadmiernie dużej dawki może mieć bardzo szkodliwe oddziaływanie na organizm. Skutki mogą być poważniejsze jeśli praca w oparach rozpuszczalników prowadzona jest w pomieszczeniach zamkniętych lub w ograniczonych przestrzeniach. W takich przypadkach stężenie oparów rozpuszczalników szybko może osiągnąć wartości niebezpieczne dla zdrowia i życia.

Wartości graniczne stężenia wyrażają maksymalne stężenie oparów rozpuszczalnika w powietrzu, które może być tolerowane w czasie 8-godzinnego dnia pracy (Dz. U. Nr 217, poz. 1833).

1) najwyższe dopuszczalne stężenie (NDS) - wartość średnia ważona stężenia, którego oddziaływanie na pracownika w ciągu 8-godzinnego dobowego i przeciętnego tygodniowego wymiaru czasu pracy, określonego w Kodeksie pracy, przez okres jego aktywności zawodowej nie powinno spowodować ujemnych zmian w jego stanie zdrowia oraz w stanie zdrowia jego przyszłych pokoleń,

2) najwyższe dopuszczalne stężenie chwilowe (NDSCh) - wartość średnia stężenia, które nie powinno spowodować ujemnych zmian w stanie zdrowia pracownika, jeżeli występuje w środowisku pracy długości co najmniej niż 15 minut i nie częściej niż 2 razy w czasie zmiany roboczej, w odstępach czasu nie krótszym niż 1 godzina.

3) najwyższe dopuszczalne stężenie pułapowe (NDSP) - wartość stężenia, która ze względu na zagrożenie zdrowia lub życia pracownika nie może być w środowisku pracy przekraczona w żadnym momencie.

zагrozenie środowiska

Niektró rozpuszczalniki stosowane do wyrobu farb znajdują się na liście związów stanowiących zagrożenia dla środowiska i ich stosowanie będzie stopniowo eliminowane. Dla przykładu, rozpuszczalniki chlorowane przyczyniają się do obniżania zawartości ozonu w górnych warstwach atmosfery. Ponadto mogą być wybuchowe w kontakcie z aparatami do natryskowego nakładania powłok aluminiowych.

8.3. zagadnienia związane z przygotowaniem powierzchni

Zagrożenia związane z przygotowaniem powierzchni wynikają z możliwości zanieczyszczenia środowiska oraz z utylizacją odpadów powstających w trakcie usuwania starych warstw małarskich.

Odpady powstające w wyniku przygotowania powierzchni klasyfikuje się jako niebezpieczne jeśli są:
- palne,
- agresywne korozjone,
- reaktywne,
- toksyczne.

Rozszt farby są zazwyczaj niebezpieczne z powodu toksyczności, np mogą zawierać ołów, kadm, chromiany lub rtęć, bądź agresywności korozjonej, np. pH większe lub równe 12,5 i mniejsze niż 2. Odpady klasyfikuje się jako toksyczne jeśli stężenie wymiaryowego ołowiului przekracza 5 mg/kg, kadm 1 mg/kg, chromu 5 mg/kg lub rtęci 0,2 mg/kg. Najczęstszą przyczyną skazania odpadów małarskich są związki ołowiu, które mogą stanowić zagrożenie dla zdrowia personelu oraz skażenie środowiska.

Większość starych pokryć olejnych może zawierać pigmenty ołowiołowe. Pigmenty te zapewniają krycie oraz barwę (pomarańczową, żółtą, zieloną lub czerwoną). Stężenia ołowiu w białych lub jasnych farbach może czasem przekraczać 50% suchej masy powłoki. Stężenie ołowiu w kolorowych farbach może mieścić się w granicach od 1 do 10% suchej masy filmu. Zastosowanie pigmentów ołowiołowych zostało znacząco ograniczone z chwilą pojawienia się ditalenu tytanu.
Rozpuszczalniki i rozcieńczalniki należą do łatwo zapalnych i prawie wszystkie posiadają kl I i II niebezpieczeństwa pożarowego (I - do 21°C, II kl 21-55°C).

Największe niebezpieczeństwa pożarowe stwarza malowanie natryskowe (rozproszenie wyrobu i intensywne utlenianie się par rozpuszczalnika - mogą doprowadzić do osiągnięcia stężeń wybuchowych).

Może dojść do wybuchu par rozpuszczalnika na skutek braku odpowiedniej wentylacji wyciągowej. W celu uniknięcia stosuje się połączenie pistoletu natryskowego, wentylacji i pomp wodnej.

Malowanie natryskowe może odbywać się w hali produkcyjnej, jeżeli na jeden pistolet natryskowy przypada 4000 m³, gniazda lakiernicze lokalizuje się w jednym wydzielonym pomieszczeniu. Najlepiej jest stosować kabiny lakiernicze, kraty ekranowe, wentylowane pola składowe wymalowanych elementów.

Szybkość powietrza w przekroju roboczym kabiny powinna wynosić 0,7m/s w kabinach z odciągiem bocznym i 0,5 m/s w kabinach z odciągiem dolnym. Kabiny uziemia się oraz wyposaża w filtry wodne, specjalne instalacje gaśnicze, podręczny sprzęt ppoż, oświetlenie w obudowie przeciwwybuchowej, jak również silniki i inne instalacje wykonane jako przeciwwybuchowe. Najbezpieczniejsze jest zblokować system uruchamiania pistoletu natryskowego z wentylacją i zraszaniem wodnym.

8.4. bezpieczeństwo pożarowe
pytania
ODPOWIEDZI
Zależnie od pełnionej funkcji są farby: nawierzchniowe (służą do ostatecznego malowania), podkładowe (oprawiają właściwości podłoża, chronią je przed działaniem czynników niszczących, zwiększają przyczepność farb nawierzchniowych). Wśród farb nawierzchniowych istnieje osobna grupa - emalie. Są to farby o wysokich właściwościach dekoracyjnych, zawierają dużą ilość spoiwa i dobre jakościowo pigmenty. Farby, w zależności od użytого rozcieńczalnika, mogą być wodne (rozcieńczalnikiem jest woda) albo rozpuszczalnikowe (rozpuszczalnikiem są węglowodory otrzymane podczas destylacji ropy naftowej - np. benzyna lakowa, alkohole, glikole i ketony - aceton).

Każdy preparat musi być trwały, mniej lub bardziej odporny na uszkodzenia mechaniczne (ścieranie) – zależnie od tego, gdzie jest zastosowany - odporny na niszczące działanie czynników zewnętrznych (jeśli ma zabezpieczać elementy na zewnątrz domu), bezpieczny dla ludzi i środowiska, mieć dobrą przyczepność do podłoża. Jednocześnie spełnienie tych warunków jest trudne, ponieważ farby bardzo twarde i odporno na ścieranie są najczęściej szkodliwe dla zdrowia, a te „ekologiczne” chociaż bezpieczne, mogą mieć gorsze właściwości użytkowe.

Rozpuszczalniki to łatwo ułatwiające się ciecz organiczne. Mają zdolności rozpuszczania substancji błonotwórczych tworzących spoiwo farb i lakierów. Najczęściej są to: benzyna, benzen, terpentyina, alkohol etylowy. Natomiast rozcieńczalniki, w odróżnieniu od rozpuszczalników, nie rozpuszczają substancji błonotwórczej, powodują tylko jej rozcieńczenie, dzięki czemu farba czy lakier uzyskują odpowiednią lepkość.

Przed zakupem należy sprawdzić datę produkcji i termin przydatności - podane są na opakowaniu. Po otwarciu wiaderka na powierzchni farby nie może być żadnych zanieczyszczeń, grudek, zaschniętego koźucha. Farba powinna mieć taką konsystencję, aby można było jej od razu użyć, bez konieczności dodawania rozpuszczalnika.

Jeśli zauważymy niepokojące objawy, to farbę należy oddać do sklepu. Reklamacje można składać również, gdy kolor farby różni się od tego, jaki został wybrany z palety, a także gdy jego odcięcia zmieni się po kilku miesiącach po pomalowaniu oraz gdy mimo właściwego przygotowania podłoża farba zacznie się odspajać lub zblaknie po kilkakrotnym myciu.

Jeśli potrzebna jest mała ilość farby, to zamiast całej puszki można kupić tester - 50-cio ml pojemniczek. Gdy dobiera się farby w mieszalnik, to warto się upomnieć o puszkę mieszanki próbnej (250 ml), która wystarcza na pokrycie metra kwadratowego ściany.

9. pytania i odpowiedzi

jakie podstawowe rodzaje farb można znaleźć na rynku?

jakie cechy musi posiadać farba i lakier?

czy malowanie preparatami rozpuszczalnikowymi jest szkodliwe?

czym się różni rozpuszczalniki od rozcieńczalników?

na co należy zwrócić uwagę kupując farbę?

czy farbę można reklamować?

lakierobiece, lakur czy kolorowy lakier?

czy różni się system RAL od NCS?

co to jest tinting?

czy są małe opakowania farb?
czym można malować posadzki betonowe?

Posadzki betonowe można malować farbami winyłowymi, akrylowymi, epoksydowymi lub poliuretanowymi. Jednoskładnikowe farby rozpuszczalnikowe winyłowe i akrylowe są mniej odporno na ścieranie niż epoksydowe i poliuretanowe; można je stosować w pomieszczeniach, gdzie ruch jest ograniczony (na przykład w piwnicach, pomieszczeniach gospodarczych).

Podłoże betonowe powinno być wysezonowane (minimum 28 dni w temperaturze 20°C), wytrzymałe, suche (wilgotność 3-4%), czyste, bez rys, spęków oraz pozbawione tzw. mieczka cementowego. Pomieszczenie, w którym prowadzone są prace, musi być dobrze wentylowane.

Niezależnie od rodzaju użytej farby podłoże betonowe zawsze należy zagrumować. Powłoka nadaje się do użytku po 7 dniach utwardzania przy dobrej wentylacji i wilgotności powietrza zalecanej przez producenta.

jak dobierać pędzle?

Wybór pędzla zależy od rodzaju farby, miejsca malowania i powierzchni, która ma być uzyskana. Pędzel płaski służy głównie do malowania farbami olejnymi, ale można go także używać do malowania farbami emulsyjnymi i do gruntowania podłoża. Jest też wykorzystywany do pokrywania miejsc trudno dostępnych, na przykład narożników ścian i sufitów, fragmentów ścian w okolicy grzejników i gniazd elektrycznych. Pędzlem ławkowcem maluje się ściany i sufity farbami emulsyjnymi, akrylowymi i klejowymi oraz gruntuje podłoże. Pędzel okrągły służy do malowania farbami olejnymi grzejników, rur i stolarki okiennej. Pędzle z włosów naturalnego są odpowiednie do farb olejnych, emali i lakierów bezbarwnych, zaś z włosów syntetycznego – do farb wodnych, a także olejnych.

do czego służą walki?

Walki wykorzystywane są najczęściej do malowania dużych i płaskich powierzchni. Maluje się nimi ściany farbami emulsyjnymi oraz lamperie farbami olejnymi. Przy chropowatym podłożu dobrze jest użyć walka z dłuższym włosiem, który umożliwia głębsze wprowadzenie farby. Walki z tworzyw sztucznych przeznaczone są do farb wodorosicielnych, z materiałów naturalnych - zarówno do wodorosicielnych, jak i rozpuszczalnikowych.

co to jest okres karencji?

Jest to czas, w którym po zakończeniu malowania w pomieszczeniu nie mogą przebywać ludzie. Okres ten jest potrzebny do całkowitego zaniku zapachu.
DODATEK
11.1. zestawienie pigmentów

11.1.1. pigmenty białe

11.1.1.1. pigmenty czarne

wapno (ang. lime; fr. chaux; nm. Kalk; ros. известь) Używa się wapna palonego albo gaszonego, które na skutek reakcji z powietrzem przekształcają się w węglan wapniowy.

biel cynkowa (ang. zink oxide lub chinese white; fr. blanc de zinc; nm. Zincweiss; ros. цинковые белила) Tlenek cynku, chłodny intensywny pigment, w oleju schnie bardzo powoli (nawet kilka tygodni). Kryje średnio, nie sprawia problemów. Często stosuje się ją jako składnik gruntów, a także jako wypełniacz do farb klejowych, pasteli i gwaszu.

biel ołowio-wodoroczna, zwana też **bielą kremską** (ang. flake white; fr. blanc d'argent; nm. Kremserweiss; ros. кремсовые белила) Zasadowy węglan ołowowy. Silnie tужąca, od dawnych czasów podstawowa biel w malarstwie olejnym. Doskonale kryje i jest intensywna, ale niestety reaguje z pigmentami zawierającymi siarkę (cynober, kadmy, ultramaryna), i ciemnieje pod wpływem siarkowodoru.

biel tytanowa (ang. titanium white; fr. blanc de titan; nm. Titanweiss; ros. титановые белила) Dwutlenek tytanu. Ciepłobiały pigment poz bawiony wszelkich wad. Doskonale kryje, odporny na światło i atmosferę, w oleju schnie przyzwoicie, nieaktywny chemicznie, nietrudy. Do wszystkich technik.

biel barytowa (ang. barium white; fr. blanc de baryte; nm. Barytweiss; ros. баритовые белила) - siarczan baru (baryt). Pigment otrzymywany przez zmielenie minerału - szpatu ciężkiego, albo sztucznie. Jest odporna na rozmaite prz ykre czynniki, nie reaguje z innymi pigmentami, ale słabo kryje. Stosowana jako wypełniacz w farbach wodnych i pastelach.

biel permanentna (fr. blanc fixe;) Sztucznie wytwarzany siarczan baru, czystszy od naturalnego.

biała glinka, kaolin (ang. white clay; fr. blanc de Chine; nm. Lehm, Pf eiferton; ros. белая глина) Uwodniony krzemian glinu - naturalna glinka.

litopon Mieszana siarczku cynku i siarczanu baru. Wytwarzany od drugiej połowy XIX wieku. Dość dobrze kryje, jest odporny na światło i atmosferę, w oleju schnie powoli, pochłania dużo oleju.

czerń sloniowa (ang. ivory black, bone black; fr. noir d'ivoire, noir d'os; nm. Ellenbeimschwarz, Kölnerchwarz; ros. слоновая кость) Zawiera fosforany węgla. Czysta, głęboka czernią z ciepłym odcieniem, trwała, kryjąca, odporna, schnie powoli, pochłania dużo oleju.

czerń z winorośl (ang. vine black; fr. noir de vigne; nm. Rebensschwarz; ros. виноградная черная) Otrzymywana ze zwęglenia tkanki roślinnej - winorośli, korka, pestek, ewentualnie w procesie suchej destylacji drzewa lipowego, lub bukowego. Zawiera 90% węgla. Ma odcięcie szaro-niebieskie. Trwały chemicznie, kryje średnio, w oleju schnie powoli.

sadza (ang. lamp black; fr. noir de bougie; nm. Lampenschwarz; ros. соя) (ang. lamp black; fr. noir de bougie; nm. Lampenschwarz; ros. соя) Czystalne, bardzo drobne pył węglowy. Otrzymuje się go z kopic spalanych bez dostępu powietrza olejów, nafty, smoły i podobnych substancji. Trwały chemicznie. Głównie stosowany do produkcji tuszu chińskiego i farb drukarskich. W oleju schnie niezwykle powoli.

czerń żelazowa, marsowa (ang. black iron oxide; fr. noire de fer; nm. Eisenoxideschwarz; ros. железная черная) Sztucznie uzyskiwany czarny tlenek żelazowo-żelazowy. Bardzo trwały.

Sporadycznie jako czarne pigmente stosuje się rozdrobnione minerały o barwie ciemnoszarej, takie jak czarny lupek albo grafit.

siena palona (ang. burnt sienna; fr.terre de sienne brulee; nm. gebrante Terra di Siena; ros. sienskaja ziemia żłonaja) Prażona ziemia sienejska, naturalna lub sztuczna, ma piękną ceglasto-brązową intensywną barwę. Półkrzyży, bardzo trwały pigment. W oleju schnie powoli.

umbra naturalna (ang.raw umber; fr. terre d'ombre naturelle; nm. Umbrabraun; ros. umbra naturalnaja) Naturalna ziemia, pochodząca z Włoch albo Cypru. Pigment ten ma kolor jasnobrunatny, jest trwały, odporny na światło i powietrze, kryje dobrze. Pochłania dużo oleju, działając nań sykatynwie (to znaczy że przyspiesza schnięcie). Niektóre gatunki mogą kwapić (przesacać się w oleju).

umbra palona (ang. burnt umber; fr. terre d'ombre brulee; nm. gebrante Umbra; ros. umbra zżonaja) Prażona umbra naturalna. Ma ciepły, ciepłobrunatny kolor. Cechy techniczne takie same jak w przypadku umby naturalnej.

palona ziemia zielona Wyżarzona ziemia naturalna. Pigment w przygaszonych, brunatnożółtych odciemniach. Użyteczny, bardzo trwały, półkrzyży.

brąz van dycka, brąz kaselski (ang. Van-Dyke brown; fr. brun de van Dyck; nm. van Dyckbraun; ros. krorcziowaja Wan Dejka) Zawiera szmalt, natomiast pigmiento, a więc przyspiesza proces schnięcia. Pigmenty te są odpornie, bardzo wydajne i trwałe.

brąz lawanda (ang. brown iron oxide; fr. oxyde de fer; nm. Eisenoxid:) Wyrabiany przemysłowo tlenek żelaza, otaczany przez żarzenia marsów żółtych. Pigment w różnych odciemniach brązu, stosowany w zastępstwie pigmentów naturalnych - sieny lub umby. Pigment trwały i wszechstronnie odporny. Dobry do wszystkich technik, można go stosować nawet na zewnętrznych ścianach budynków.

mumia Zawiera szmalt, naturalną substancję barwów. Niniejsze pigmenty czerwone, trwałe, odpornie, bardzo wydajne i trwałe.

sepia Półprzezroczysty, ciemnobrunatny płyn wydzielany przez różne głowonogi, zwłaszcza przez mąty. Używany jako ciepłobrązowy barwnik do wyrobu atramentów, tuszów i akwareli. Niezależnie wytrzymały na światło.

cezewy ugier palony (ang. red earth; fr. ocre rouge; nm. Gebrante Ocker; ros. żłonaja krasnaja ochra) Pigment otaczany przez żarzenia naturalnych ugrów (glinokrzemianów zawierających tlenki żelaza). Żywa, ceglasta czerwień, wszechstronnie odporna, dobrze kryjąca.

pucoła Naturalny tuż wulkaniczny, wydobywany w miejscowości Puzzola w Italii. Wyrabia się z niego pigment o barwie chłodnej, zgazzonej czerwieni. Doskonałe wiąże się z zaprawą wapienną, nadając jej ciepłobrunatny kolor. Bardzo trwały.

czerwone tlenki żelazowe naturalne, czerwienie marsowe (ang. red iron oxide; mars red; fr. rouge oxiide; rouge de Mars; nm. Marsrot; ros. marsowaja krasnaja:) Pigmenty czerwone, składające się z tlenków żelaza, które otrzymuje się przez prażenie żółtych tlenków żelazowych. Występują w różnych odciemniach, od żółto-pomarańczowych do fioletowo-brązowych. Pigmenty te są odpornie, bardzo wydajne i trwałe.

róż angielski (ang. Englishred, light red; fr. rouge d'Angleterre; nm. Englisch rot; ros. Anglijskaja krasnaja:) Kiedyś nazywano tak pewien rodzaj ugru palonego, o odcienn podobnym do różu indyjskiego, obecnie nazywa się tak wyprawany tlenek żelaza o ceglastym kolorze.
róż wenecki (ang. venetian red; fr. rouge de Venice; nm, Venetianisrot; ros. wieniecjawskaja krasnaja;) tlenek żelaza z dużym dodatkiem siarczanu wapniowego tworzy pigment w kilku odcieniach cłodnej czerwieni. Pigment trwały, ale niekiedy wędruje w połączeniu z olejem, dlatego lepiej zastąpić go czymś innym.

róż indyjski (ang. Indian red; fr. rouge de l'Inde; nm. Indischrot; ros. indijskaja krasnaja;) w przeszłości - naturalny tlenek żelaza bariarwią glnokrzemiany pochodzenia indyjskiego. Ma intensywny czerwony kolor z fijolkowym odcieniem. Obecnie wyrabia się go sztucznie.

caput mortuum (łac. - martwa głowa) Fioletowo-brunatno-czerwony tlenek żelazowy, dawniej uzyskiwany z naturalnej ziemi.

cynober (ang. vermilion; fr. vermillon; nm. Zinnober; ros. konowar;) Siarczek ręczowy. Znany od starożytności barwnik w kolorze sygnałowej czerwieni. Wytrzymały na wpływy atmosferyczne, ciemniejsze z wiekiem pod wpływem światła słonecznego. Wchodzi w reakcje z bielą ołowiową i żółciami chromowymi.

czerwień chromowa (ang. chrome red; fr. rouge de chrome; nm. Chromrot; ros. oranżowyj chrom) Zasadowy chromian ołowiu. Podobny w kolorze do jasnego cynobru, lepiej znosi światło od żółcien chromowym, jest wrażliwy na siarkowodor. Pigment trujący.

kraplak, karmin, smocza krew to grupa laserunkowych czerwiń uzyskiwanych niegdyś z barwników organicznych. Obecnie zastępowane są przez farby alizarynowe, które dobrze naśladują ich odcień barwny a są trwalsze i łatwiejsze do uzyskania.

karmin (ang. crimson lake; fr. carmin; nm. Karminlack; ros. koszinilowyj łak) Znany od wieków w Indiach wyciąg z mszy koszenili, potem sprowadzany do Europy z Meksyku, gdzie wytwarzano go z mszy żerzących na kaktusach. Piękny intensywny barwnik purpurowy, płowiący w świetle. Laserunkowy. Obecnie zastępowany przez alizarynowe laki barwne i inne związki syntetyczne.

smocza krew (ang. dragon's blood; fr. sang de dragon; nm. Drachenblut; ros. drakonowaja krow) Wyciąg z żywicy palmy Calamus draco. Ma ciemną krwistą barwę, płowiącą od światła, jest trujący i nie rozpuszcza się w terpentynie. Wycofany z użycia.

czerwień chinakrydonowa (ang. quinacridone red; acridone red; fr. rouge quinacridone; nm. Permanentalt55 E5B) Syntetyczny, organiczny lak barwny o pięknym szkarłatnym kolorze. Odporny na światło, półlaserunkowy.

oranż kadmowy (ang. cadmium orange; fr. jaune de cadmium orange; nm. Cadmium orange) Seleno siarczek kadm. Pigment o jasnej pomarańczowej barwie, bardzo odporny na światło, kryjący, dobrze znosi wpływy atmosferyczne. Nie powinien być mieszany z pigmentami miedziowymi.

oranż chromowy (ang. chrom orange; fr. jaune de chrome orange; nm. Chromorange; ros oranžewyj chrom) Zasadowy chromian olowi. Ma barwę mocno pomarańczową, prawie jasnoczerwoną. Trwały na światle od żółci chromowych, ale wrażliwy na siarkowódzor zawarty w powietrzu. Nie można go mieszać z niektórymi pigmentami. Jest trująży.

aureolina, żółcień kobaltowa (ang. cobalt yellow; fr. jaune de cobalt; nm. Aureolin; ros. żółtyj kobalt) Zasadowy azotan kobaltowo-potasowy. Efektywna żółtożółta barwa, laserunkowy, dość odporny na światło, wrażliwy na kwasy i zasady. Nie mieścić z ultramaryną i czerwienią krapową, bo brawuncie.

żółcień tytanowa Mieszana związków tytanu, antymonu i niklu. Ma kolor jasnożółty, cytrynowy. Dobrze kryje, jest odporny na światło, dobry do różnych technik.

żółcień barytowa (ang. barium yellow; fr. jaune de barium, outremer jaune; nm. Barytgelb; ros. barytowaja żółta) Chromian baru. Pigment ten ma bladożółty kolor z zielonkawym odciением, jest laserunkowy i mało intensywny, odporny na światło. W wodzie nie rozpuszcza się, nadaje się do technik ze spoiewem organicznym. Często stosowany w mieszankach.

żółcień cynkowa (ang. zink yellow, citron yellow; fr. jane de zink; nm. Zinkgelb; ros. żółtaja cinkowaja) Zasadowy chromian cynku, produkowany od 1809 roku. Ma barwę cytrynową, jest półlaserunkowy, pod wpływem światła lekko zieleenie. Zmieszany z farbami kamowymi reaguje i ciemnieje. Stosowany do uzyskania zieleni w mieszankach z błękitem pruskim albo zieleną szmaragdową, rzadko jest dobrej jakości.

- 65 -

aurypigment (ang. King's yellow; fr. orpigment; nm. gelber Arsenik; ros. żółtyj auripigment) Trójścianek arsenu, mineral znany od starożytności, obecnie wytwarzany sztucznie. Ma piękną, złocistą barwę, jest kryjąca, niezbędny trwały i bardzo trujących. Ma znaczenie historyczne, wycofany z produkcji.

realgar (ang. realgar; fr. arsenic orange; nm. roter Arsenik; ros. krasnyj auripigment) Naturalny dwusierczen arsenu o pochodzeniu mineralnym. Pigment ten ma żywy cieniówżółtyj kolor, nieco płowiejący w świetle. Trujących, używany do końca XIX w.

żółcień indyjska (ang. indian yellow, monghry piuri; fr. jaune indien; nm. Indischgelb; ros. farblak, indijska żółtaja) Sól magnezowa kwasu eukantoynowego. Organiczny barwnik, otrzymywany w Bangalu z moczu królow karzowych liściami mango. Pigment laserunkowy koloru złotożółtego, trwały, ale obecnie nie produkowany. Zastępczo wytrawia się jak organiczny, zwany żółcią indantrenową, który jest wytrzymał na światło i wpływy atmosferyczne.

żółcień azowa hansa, żółcień pigmentowa G (ang. citron yellow; fr. jaune citron; nm. Helionengelb; holend. Talensgeel) Organiczny, syntetyczny barwnik, wszechstronnie odporny i trwały, wprowadzony od 1924 roku. Występuje w różnych odciennych, od cytrynowego do pomarańczowego.

arzika Wyciąg z rezedy. Barwnik o złotawym, niezbędny intensywnym odciennym. Po pewnym czasie całkowicie płowieje, podobnie jak inne wyciągi roślinne.

żółcień szafrañowa Uzyskiwana ze znamion kwiatów szafranu Crocus sativus, do dziś używana jako imitacja pozłotki na foliach.

gumiguta (ang. gambodge; fr. gomme goutte; nm. Gummi gutta; ros. gummigut) Żywica z cejlońskiego drzewa Garciana morella. Barwnik o bladym, cieniowżółtym kolorze, niezbędny wytrzymała na światło, odporny na kwasy, trujących. Stosowany w przemyśle drzeworoconnym do wyrobu pokostów, ze względu na sykatywnie właściwości.

ziemia zielona (ang. green earth; fr. terre verte naturelle; nm. grüne Erde; ros. zielonaja ziemia) Krzemian glino-magnezowy, zawierający wodorotlenki żelaza. Występuje w naturalnych złożach w pobliżu Werony oraz na Cyprze. Pigment ten jest trwały i wszechstronnie odporny, w oleju schnie powoli i słabo kryje.

chromoksyd, zielony chromotlenek kryjący (ang. chromium oxide; fr. oxide de chrome; nm. Chromoxid grün; ros. zielonyj okis chroma) Tlenek chromu. Pigment o zgaszonej, cieniozielonej barwie. Jest intensywny idobrze kryje, odporny na światło i powietrze, można go swobodnie mieszajć z innymi pigmentami.

zielęń travała Tak nazywane są mieszanki zieleni szmaragdowej z żółtą cytrynową, kadmową albo żółtą barytoją.

zielona ultramaryna (ang. ultramarine green; fr. outremer vert; nm. grunes Ultramarin; ros. zielonyj ultramarín) Związek krzemianu glino-sodowego z siarczkami sodu. Intensywny, ciemnozielony, laserunkowy pigment.

zielęń kobaltowa (ang. cobalt green; fr. vert de cobalte; nm. Kobaltgrün; ros. zielonyj kobalt) Mieszana cynkanu kobaltu i tlenku cynku. Ma kolor niezbędny intensywnej, zgasszonej zieleni, kryjący, o zadowalających własnościach technicznych.

zielęń Paola Veronese’a (ang. emerald green; fr. vert Veronese; nm. Schweinfurtergrün; ros. zielonaja Pol Wieroniez) Arsenoociąt miedziany o pięknej, jasnej i zimnej barwie. Wytwarzany od 1814 r. Pigment ten dobrze kryje, jest względnie odporny na światło, ale ma też wiele wad. Nieodporny na kwasy i lugi, czernieje od siarkowodoru, reaguje z wieloma pigmentami - bielą ołowioną, litopenem, ultramaryną,

śnież miedziowa, zieleń hiszpańska (ang. verdigris; fr. vert de Hongrie; nm. Grünspan; ros. jar-miedzianka) Zasadowy ocyan miedzi. Znany od wieków pigment o barwie jaskrawej zimnej zieleni, nietrwały chemicznie (łatwo czernieje pod wpływem siarkowodoru), wrażliwy na alkalia, reaguje z pigmentami zawierającymi siarkę i ołów (ultramaryna, kadmy, cynober, biel ołowiana, żółcień neapolitańskie, żółcień chromowy). Używany w przeszłości do malowania kopuł cerkiewnych w Rosji. Bardzo silnie trujący, wycofywany z użycia.

zieleń cynkowa, zieleń wiktoria Tak nazywa się mieszanka błękitu pruskiego z żółcią cynkową, albo zieleni szmaragdowej z żółcią żółtową. Jasny, zielonożółty pigment nieodporny na alkalia.

zieleń soczysta (ang. sap-green, bladder green; fr. vert de vessie; nm. Saftgrün; ros. sokowaja zieleń) Produkowana z naturalnych soków roślinnych. Żółtozielone laki barwne uzyskiwano w owych dawnych czasach z różnych roślin - sasanki, ślazu, psianki, przywrotnika, soku czarnego bzu, i przechowywano w pęcherzach. Nazwę zieleni soczystej nosiła mieszanka laku wytworzonego z szakłaku, oraz indyga. Niestety wszystkie omawiane laki płowieją, i dlatego nie są dziś stosowane. Obecnie nazwę zieleni soczystej nosi mieszanina błękitu ftalocyjaninowego z żółtą kobaltową i dodatkiem sieny naturalnej.

11.1.7. pigmenty niebieskie i fioletowe

ceruleum, blękita nieba (ang. cerulean blue; fr. bleu celestique; nm. Coelinblau, Himelfblau; ros. cjelin) Cynian kobaltowy z domieszką gipsu i kwasu krzemowego. Pigment o barwie bladobłękitnej z zielonkawym odcięciem, trwały, kryjący, wszestronne odporny.

blękita górski (ang. azure blue; fr. bleu de montagne; nm. bergblau; ros. golubiec, gornaja błękit) Zasadowy węglan miedziowy. Początkowo wybrany z azurytu, później wytwarzany sztucznie. Piękny odień blękita, szczególnie dobrze prezentujący się w sztucznym świetle. Odporny na alkalina i światło słoneczne, czernieje pod wpływem siarkowodoru, nie można go mieszać z pigmentami ołowcowymi i kadmowymi. Trochę zielenieje pod wpływem oleju, jest trujący i wychodzi z użycia.

smalta (ang. smalt; fr. email bleu - już wiadomo, czemu linki są niebieskie; nm. blauer Audam; ros. kobaltowowe stieklo) Krezman kobaltowo - potasowy (zmieione szkło kobaltowe). Pigment jest mało intensywny, słabo kryje i daje nikłer efekt barwny. Jest odporny na światło, powietrze, kwasy i zasady. Stosowano go powszechnie do czasu wprowadzenia sztucznie produkowanej ultramaryny.

indygo (ang. indigo; fr. indigo; nm. Indigoblau; ros. indigo) Znany od bardzo dawna barwnik wytwarzany z ugrami, zwłaszcza w Indiach roślina Indigofera tinctoria. Jest nietrwały, kolor nieco niebieskozielony, trwały, ma właściwości两类 podobne do ultramaryny blękitej. Odporny na alkalina, stosowany często w farbach wodnych.

fiolet kobaltowy cienny (ang. cobalt violet; fr. violet de cobalt; nm. Kobaltviolette) Fosforan lub arsenian (w tej wersji trującej) kobaltu. Ciepły, cienifioltowy, półkryjący, mało intensywny. Trwały i odporny na światło. fiolet kobaltowy różowy to amonowy fosforan kobilatu, różowawy, odporny na światło, półlaserunkowy. Natomiast fiolet kobaltowy jasny został wycofany z produkcji jako trujący i nietrwały - wyrabiano go z podłenkow kobilatu i kwasu arsenowego.

fiolet chinakrydonowy (ang.quinacridone violet; fr. violetde quinacridone) Organiczny lak barwny, syntetyczny. Ma barwę fioletowo-żółtową, odporny na światło, półlaserunkowy.
spis

LITERATURE
spis literatury

notatki